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PREFACE

“There is a theory which states that if anybody ever discovers exactly

what the Universe is for and why it is here, it will instantly disappear

and be replaced by something even more bizarre and inexplicable. There

is another theory which states that this has already happened”

Douglas Adams

Where do we come from? What are we? Where are we going? These questions

have perplexed human beings ever since we started intellectual reasoning. However,

most attempts to answer these questions in history were simply based on logic, not

on evidence. If we look these questions from the perspective of modern physics, we

immediately realize that the above questions should be traced back to the following

questions. Where does the Universe come from? What is the Universe made of?

Where is the Universe going?

Over the past century, revolutionary progress in physical science enabled us to

discuss the Universe in terms of empirical evidence rather than pure speculation. Over

the past decade, progress in technology has pushed Cosmology into the precision era.

The composition, evolution and fate of the Universe has became one of the major

Figure 1. Where Do We Come From? What Are We? Where Are We Going? Painting
by Paul Gauguin, (1897-1898). Courtesy of Museum of Fine Arts, Boston. Adapted from
Wikipedia
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Figure 2. Galaxy cluster show itself in multi-wavelength of electromagnetic emission. From left to
right, each corresponding to X-ray, optical and microwave band.

topics for serious scientists.

Among the four known fundamental interactions, only electromagnetism and grav-

ity can carry interactions over a long range. In our Universe, most objects are elec-

trically neutral but massive. Therefore the dominant interaction on large scales in

the Universe is gravity. However, the ”charge” for gravitational interaction is Mass

and the strength of gravity is lot weaker (∼ 1036) than their electromagnetic coun-

terpart, making them VERY weakly coupled to our instruments. As a result, only

when the gravitational effects are manifested by electromagnetic phenomena, we can

reliably detect them to high precision with our current technology. Therefore, we

need something that is gravitationally significant so that cosmological information

can be effectively encoded in, while also manifesting strong electromagnetic features

so that we can reliably detect it.

Under the above criterion, galaxy clusters stand out immediately. They are so

massive that they get the strongest imprints during the evolution of the Universe.

On the other hand, they also show strong features in various wavelengths of the

electromagnetic emission (e.g. see Figure 2), leading to their reliable detection. This

unique characteristic make galaxy clusters a very important probe for cosmology.

To probe the Universe with galaxy clusters, the first step is to build a large catalog

for clustered galaxies. This is the major topic of this work!
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ABSTRACT

OPTICAL GALAXY CLUSTER DETECTION ACROSS A WIDE REDSHIFT

RANGE

by

Jiangang Hao

Chair: Timothy A. Mckay

The past decade is one of the most exciting period in the history of physics and

astronomy. The discovery of cosmic acceleration dramatically changed our under-

standing about the evolution and constituents of the Universe. To accommodate the

new acceleration phase into our well established Big Bang cosmological scenario un-

der the frame work of General Relativity, there must exist a very special substance

that has negative pressure and make up about 73% of the total energy density in our

Universe. It is called Dark Energy. For the first time people realized that the vast

majority of our Universe is made of things that are totally different from the things

we are made of. Therefore, one of the major endeavors in physics and astronomy in

the coming years is trying to understand, if we can, the nature of dark energy.

Understanding dark energy cannot be achieved from pure logic. We need em-

pirical evidence to finally determine about what is dark energy. The better we can

constrain the energy density and evolution of the dark energy, the closer we will get

to the answer. There are many ways to constrain the energy density and evolution

of dark energy, each of which leads to degeneracy in certain directions in the param-

eter space. Therefore, a combination of complimentary methods will help to reduce

the degeneracies and give tighter constraints. Dark energy became dominate over

matter in the Universe only very recently (at about z ∼ 1.5) and will affect both

the cosmological geometry and large scale structure formation. Among the various

experiments, some of them constrain the dark energy mainly via geometry (such as

CMB, Supernovae) while some others provides constraints from both structures and

geometry (such as BAO, Galaxy Clusters)

Galaxy clusters can be used as a sensitive probe for cosmology. A large cluster



catalog that extends to high redshift with well measured masses is indispensable for

precisely constraining cosmological parameters. Detecting clusters in optical bands is

very efficient. Multi-color CCD photometry allows combined detection and redshift

estimation for clusters across broad redshift ranges. However, the lack of precise

information about galaxy positions along the line of sight leads to contamination

by projection, which plagues both cluster detection and the measurement of their

properties. The dominance of red sequence galaxies, tightly clustered along the E/S0

ridgeline, provides a powerful method for de-projecting field galaxies.

We developed an Error Corrected Gaussian Mixture Model to fit the galaxies’

color distribution around clusters by taking into account the measurement errors. By

this technique, we can detect the red sequence color clustering and extract unbiased

information about the evolution of the red sequence ridgeline and its width. Precision

measurements of ridgelines yields better estimates of cluster richness and possibly

their dynamical state, leading to better estimates of cluster mass.

By using the red sequence clustering in color space identified from the Error

Corrected Gaussian Mixture Model, together with the projected NFW filter in the

projected RA/DEC plane, we developed a new and efficient cluster finding algorithm

that can reliably detect galaxy clusters across the redshift range from 0.1 to 1.4.

We have also run the cluster finder on legacy SDSS DR7 data and assembled an

approximately volume limited cluster catalog across redshifts from 0.1 to 0.5. The

algorithm has been tested against a Monte Carlo mock catalog, showing the identified

clusters are highly complete and pure.

With the completion of this thesis, we build the first and essential step towards

precision cluster cosmology. Meanwhile, the large optical cluster catalog across a

wide redshift range makes possible the systematic and detailed investigation of cluster

formation and evolution.
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CHAPTER 1

Introduction

“The most incomprehensible thing about the world is that it is compre-

hensible”

Albert Einstein

1.1 Current Status of Cosmology

The most exciting discovery in Physics and Astronomy over the past decade is

the accelerating expansion of our Universe initially revealed by Supernovae experi-

ments (Perlmutter et al., 1999; Riess et al., 1998). Despite initial skepticism, this dis-

covery has been confirmed by other independent experiments based on the cosmic mi-

crowave background (Spergel et al., 2003, 2007), the galaxy power spectrum (Tegmark

et al., 2004) and baryon acoustic oscillations (Eisenstein et al., 2005). This discov-

ery challenges many of our established notions about the evolution and composition

of the Universe. It requires dramatic changes: either gravity changes from attrac-

tive to repulsive on very large scales or the cosmic composition needs to be changed

to include substance that can offset gravitational attraction and produce repulsive

interactions at large scales.

Given the fact that gravity has been well tested on solar system scales and its

attractive nature is consistent with galaxy cluster scale observations, it is difficult to

imagine that gravity turns repulsive at larger scales. This requires gravity to become

zero at a certain scale when it turns from attractive to repulsive. Therefore, most

people prefer to imagine a substance that has negative pressure and can drive the

acceleration of the cosmological expansion. This mysterious substance is now called

1



Dark Energy, and observations suggest that it makes up of ∼ 74% of the total energy

density of the Universe.

What is dark energy? This question is one of the major topics of current Physics

and Astronomy. A plethora of theoretical models for dark energy have been proposed

and most are consistent with current observations. Therefore, tighter constraints on

the energy density and evolution of dark energy from new experiments are essential

for narrowing down the list of candidates.

There are several different ways to constrain the energy density and evolution

of dark energy, each of which leads to degeneracy in certain directions of parame-

ter space. Therefore, a combination of complementary methods will help to reduce

the degeneracies and give tighter constraints on each parameter. The existence of

dark energy will affect both the geometry of the Universe and large scale structure

formation. Among the possible experiments, some constrain dark energy mainly via

geometry (e.g. CMB, Supernovae); while some others provide constraints from both

structure growth and geometry (e.g. BAO, Galaxy Clusters). In Figure 1.1, we show

the constraints on dark energy from various experiments. In this work, we will mainly

consider the constraints from galaxy clusters.

1.2 Structure Formation and Galaxy Clusters

The large scale structures in our Universe are grown from initial fluctuations of quan-

tum fields during inflation. The fluctuations are amplified under gravity and evolve

to form large scale structures. Luminous matter1 does not play a major role in this

process because its total mass is only about one fifth of another unknown substance:

Dark Matter. Figure 1.2 shows a summary of the cosmic energy budget for different

components. Compared to dark energy, we know a little bit more about dark matter.

Dark matter is very massive and interacts mainly via gravity. For more details about

dark matter, refer to the review paper (Bertone et al., 2005). A major difference

between dark matter and dark energy is that dark energy produces effectively repul-

1Strictly speaking, should be the Standard Model particles

2



Figure 1.1. The constraints on the dark energy from various observations. The panel on the left
assumes dark energy is a vacuum energy and the right panel assumes dark energy is a dynamically
evolving component with equation of state parameterized as w(a) = w0 + dw

da
(1 − a). The panel

on the left is adopted from ESO press release (ESO, 2004) and the right panel is adopted from the
Dark Energy Survey science proposal (Frieman et al, 2006)

sive interaction, while dark matter exerts ordinary gravity as described by general

relativity.

Therefore, the major driving force for structure formation is from dark matter.

Big fluctuations of the dark matter density field collapse under gravity and form

bound systems, called dark matter halos. Luminous matter then cools into the dark

matter halos to form galaxies and stars. The smaller halos carried with galaxies merge

together to form bigger halos whose luminous counterparts form galaxy clusters. The

Figure 1.2. Current constraints on the energy densities of different constituents in our Universe.
The image is reproduced from (Wikipedia, 2009)
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Figure 1.3. The formation of large scale structures and galaxy clusters from the initial fluctua-
tions in primordial plasma. From top left to bottom right are, CMB map(from WMAP website),
Millennium Simulation of structure formation at redshift 18.3, 5.7, 1.4 and 0.0 (from VIRGO CON-
SORTIUM website) and galaxy cluster (from Spacedaily.com)

pictures in Figure 1.3 show the stages of structure formation. Large scale N-body

simulations (Evrard et al., 2002; Springel et al., 2005) can reliably predict the forma-

tion of halos of various mass scales given a specific set of cosmological parameters.

Because these predictions are robust, it is possible to constrain the cosmological pa-

rameters from measurement of halo abundance and the spatial distribution. However,

dark matter halos neither emit nor absorb electromagnetic radiation, making their

detection very hard. Therefore, we should look for something that can be a good

tracer of dark matter halos at large mass. Galaxy clusters are reliable probes of dark

matter halos.

1.3 Galaxy Clusters as Cosmological Probes

In this section, we will briefly outline the theoretical connection between galaxy clus-

ter and cosmological parameters and the challenge.

1.3.1 The Hard Reality

As we pointed out in the previous section, dark matter plays the major role in large

scale structure formation. N-body simulation can predict the abundance and distri-

bution of dark matter halos under a set of cosmological parameters (Sheth & Tormen,

1999). However, dark matter halos do not have electromagnetic emissions and can-
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not be detected directly. We need to seek for something that can be easily detected

and is a good tracer of dark matter halos. Galaxy clusters are appropriate tracers of

massive dark matter halos.

Observationally, we can detect galaxy clusters from three major wavelengths of

their electromagnetic emission: microwave, optical and X-rays. In the microwave

band, cluster detection is facilitated by the Sunyaev-Zeldovich effect (SZE) (Sunyaev

& Zeldovich, 1970; Carlstrom et al., 2002). The CMB photons are scattered by the

high energy electrons in the intracluster medium (ICM) of galaxy clusters, leaving

imprints of galaxy clusters on the CMB map. One very attractive advantage of de-

tecting clusters using SZE is its redshift independence, allowing a “uniform” detection

across a wide redshift range. For more details about SZE cluster detection, see Carl-

strom et al. (2002, and references therein). Most recently, four clusters detected from

SZE have been reported by the South Pole Telescope team (Staniszewski et al., 2008,

SPT), which is good evidence of the feasibility of SZE cluster detection.

However, SZE does not differentiate clusters along the line of sight. The observed

SZE signal is an integrated effect of all clusters along the same line of sight. There-

fore, the “clusters” detected from SZE are two dimensional projections of the actual

clusters. To resolve clusters along the line of sight, optical follow up is needed to get

the redshifts for the SZE detected clusters.

In the X-ray band, galaxy clusters also show strong emission. The hot gas trapped

in the deep potential well interacts violently, leading to strong X-ray emission. Since

the X-ray emission is closely related to the hot gas trapped in the potential well of

the cluster, their luminosity is negligible outside of the cluster, making the detection

of galaxy clusters in the X-ray band less prone to contamination due to projection.

However, detection of clusters in the X-ray band cannot be done through ground

based experiments due to strong atmospheric absorption. Since the 1990s, several

satellite based X-ray observatories have been deployed to detect clusters in the X-ray

band. The ROSAT all-sky survey (Voges et al., 1999, and references therein) is the

first full sky X-ray survey and gives rise to several X-ray cluster catalogs: NORAS

(Böhringer et al., 2000), REFLEX (Böhringer et al., 2004) and 400 deg2 (Burenin
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et al., 2007). More recently, XMM Newton (Jansen et al., 2001) and the Chandra

satellite (Vikhlinin et al., 2006) were launched to study the detailed X-ray properties

of selected galaxy clusters. Similar to detecting clusters using SZE, X-ray cluster

detection cannot provide the redshift of the cluster. Additional follow up in the

optical band is necessary to assign redshift to the detected clusters.

In the optical band, galaxy clusters show strong features. Compared to the afore-

mentioned cluster detection in the microwave band and the X-ray band, optical cluster

detection is less expensive and can detect the redshifts of the clusters. The disadvan-

tage lies in that the contamination due to projection in optical band is much more

than that in the other two band because optical emission is not exclusive to clustered

galaxies. Especially, when we look for clusters across a wide redshift range, the con-

tamination due to projection will significantly degrade cluster detection as well as

measurements of their properties. We will leave the details to later sections.

If we want to constrain cosmological parameters using galaxy clusters, we essen-

tially need to reconstruct the distribution of halos and their masses from clusters.

However, reconstructing halo distribution from galaxy clusters is not an easy and

clean job. Current N-body simulations cannot address this issues because the physics

of how galaxies accumulate to halos is not yet well settled. The following two major

challenges emerge when we reconstruct the halo distributions from clusters.

The first challenge is the bias between clusters and halos. This is partially a issue

of definition of clusters and halos. Galaxy clusters (baryonic matter) will trace the

dark matter halos through gravitational interaction, but not necessarily as a one-

to-one mapping. One can imagine that one halo can associate with more than one

clusters. In a cluster detection process, different cluster finding algorithms working

at different wavelengths have different “definitions” about the observable features

of clusters. Therefore, clusters detected in different wavelengths using different al-

gorithms can be very different. For example, clusters detected in the X-ray and

microwave band essentially map out the over-dense intracluster medium while clus-

ters detected optically map the over-density of the galaxy distribution. For certain

fully relaxed systems, we can expect some concordance among them. But in general,
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there may be a big offset among them.

If we impose the one to one matching of clusters and halos, we need to percolate

close pairs of clusters to form bigger ones. In this way, we hide the bias problem

by increasing the scatter of mass observable relation. If we want to obtain tighter

cosmological constraints, we need to model this bias so that we can decrease the

scatter.

The second challenge comes from the masses of the clusters or the underlying

halos. We need to reliably determine the statistical behavior of masses in order to

constrain cosmological parameters. However, the masses are not directly observable.

We need to choose certain mass proxies that can be detected directly. Though the

final calibration between mass proxies and masses requires independent measurements

of masses, we can still get some rough estimates about the mass scatter from various

mass proxies based on simulations.

For clusters detected in the X-ray band, the X-ray luminosity and temperature

are correlated to the mass of the underlying halos. The mass scatter 2 from X-ray

luminosity LX is ∼40% for fixed LX (Stanek et al., 2006) while the mass scatter

achieved from the X-ray temperature (TX) is ∼15% at fixed TX (Vikhlinin et al.,

2006). For clusters detected from SZE, the Compton Y parameter integrated within

a radius enclosing a contour of 500 times the critical density correlates strongly with

the cluster mass, leading to a scatter of ∼10%-15% (Rudd, 2007). For optically

selected clusters, the masses for individual clusters are not easily attainable. However,

by stacking clusters of similar optical richness, the masses can be obtained through

weak lensing analysis (Johnston et al., 2007; Sheldon et al., 2007a) and velocity

dispersion (Becker et al., 2007). The corresponding scatter in mass for a given richness

bin are ∼13% and ∼60% for weak lensing and velocity dispersion analysis respectively.

For a review on different mass proxies, refer to Voit (2005).

Note that since large mass scatter will degrade our cosmological constraints, we

need to pin down the scatter as much as possible. Clearly, detecting clusters at only

one wavelength will not be very effective. Therefore, multi-wavelength synergy is

2The scatter in mass quoted here is the scatter in log mass, i.e. σln M .
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needed for narrowing down the mass-observable scatters. Suppose we solve all the

above challenges to a satisfactory level. How do we relate the halos to cosmological

parameters? In the following subsections, I will outline the theoretical connections

among halo abundance, clustering and cosmological parameters.

1.3.2 Theoretical Connection I: Number Counts

N-body simulations based on a given set of cosmological parameters can predict the

comoving number density of dark matter halos above certain mass thresholds. This

means that if we can measure/count the comoving number density of dark matter

halos above a certain mass, we can reverse the process to constrain cosmological

parameters. To calculate the comoving density, we need two pieces of information:

i) The direct number counts of halos above a certain mass; ii) The comoving volume

corresponding to the halos. The first part is a result of the structure growth in a

given cosmology while the second part results from the geometry of that cosmology.

Comoving volume:

The differential co-moving volume in the Friedman-Robertson-Walker Universe

can be calculated through the following equation:

dVc =
c(1 + z)2DA(z)2

H0E(z)
dΩdz (1.1)

where DA is the angular diameter distance

DA(z) =
c

H0(1 + z)

∫ z

0

dz′

E[z′]
(1.2)

For the special case of a FRW universe with dark energy equation of state can be

written as w(z) = p(z)/ρ(z), the E(z) is defined as:

E(z) =
H(z)

H0

=

[

Ωk,0(1+z)2+ΩR,0(1+z)4+ΩM,0(1+z)3+ΩDE exp{
∫ z

0

−3[1 + w(z′)]dz′

1 + z′
}
]1/2

(1.3)

Comoving number density:

The comoving number density of dark matter halos in a given cosmology can be
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obtained from N-body simulations. The general form of the differential comoving

number density is:

dn = f(M, z)dM (1.4)

Where f(M, z) is the so called mass function. Based on N-body simulation, an

empirical fitting formula for f(M, z) is obtained by Jenkins et al. (2001):

f(M, z) =
dn

d ln M
= 0.3

ρM

M

d ln σ−1

d ln M
exp[−| ln σ−1 + 0.64|3.82] (1.5)

where σ is the variance of the mass density perturbation field smoothed using a

window function.

σ2(M, z) =
G2(z)

2π2

∫ ∞

0
k2P (k)W 2(k,M)dk (1.6)

and G(z) is the growth factor of linear perturbation. It is the solution of the the 2nd

order differential equation:

G′′ +

[

5

2
− 3

2
w(z)ΩDE(z)

]

G′′ +
3

2
[1 − w(z)]ΩDE(z) = 0 (1.7)

where ’ denotes the derivative with respect to ln a and a is the scale factor. The

initial conditions are: G(0) = 1 and G′(0) = 0 (Hu, 2005). In a ΛCDM universe, the

growth function is in the following simple form:

G(z) =
5

2
E(z)

∫ ∞

z

1 + z′

E(z′)3
dz′ (1.8)

W (kR) is the Fourier transform of the window function

W (k,M) =
3[sin(kR) − kR cos(kR)]

kR
(1.9)

where

M =
4πR3

3
ρM =

4πR3

3
ΩM,0ρc,0 =

H3
0ΩM,0R

3

2GN

(1.10)
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and P (k) is the power spectrum of the matter field. It can be related to the initial

power spectrum Pini as (Eisenstein & Hu, 1998)

P (k) = PiniT
2(k)

[

G(z)

G(0)

]2

. (1.11)

T (k) is the linear transfer function, which can be fitted as

T (k(q)) =
L(q)

L(q) + C(q)q2
(1.12)

where

L(q) = ln(e + 1.84q) (1.13)

C(q) = 1.44 +
325

1 + 60.5q1.11
(1.14)

and q scales to k as

q =
k

Γeff

(TCMB/2.7K)2 (1.15)

with

Γeff = ΩMh
[

1 − 0.38 ln(431ΩMh2)
Ωb

ΩM

+ 0.38 ln(22.3ΩMh2)(Ωb/ΩM)2
]

(1.16)

Number Counts:

With the above formulae, if we can measure the numbers of halos per solid angle

and redshift slice, we can connect them to the cosmological parameters immediately

by:

dN(z)

dzdΩ
=

cd2
A(1 + z)2

H(z)

∫ ∞

Mlim(z)
d ln Mf(M, z) (1.17)

Where Mlim is the mass threshold. So far, we have demonstrated how the number

counts of dark matter halos relate to the underlying cosmological parameters. How-
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ever, the number count only contains information about the first moment of the halo

distribution. The second moment, i.e. the spatial clustering, can relate to cosmolog-

ical parameters in a different manner.

1.3.3 Theoretical Connection II: Clustering

Halo clustering can be described by the two point correlation ξhh(r) or its Fourier

counterpart power spectrum Phh(k). The P (k) in Eq.(1.11) is the power spectrum of

the matter field, not the halo distribution. To first order, the power spectrum of the

halo distribution relates to the matter power spectrum by multiplication of a bias via

the following equation (Majumdar & Mohr, 2004)

Phh(k, z) = b2
eff (z)P (k, z) (1.18)

where beff is the bias defined by

beff (z) =

∫

dMb(M, z)f(M, z)
∫

dMf(M, z)
(1.19)

with the bias given by (Sheth & Tormen, 1999)

b(M, z) = 1 +
aδ2

c/σ
2 − 1

δc

+
2p

δc[1 + (aδ2
c/σ

2)p]
(1.20)

where a = 0.75, p = 0.3 and δc = 1.69. On the other hand, we can measure the

power spectrum of the halos by inversion of the point correlation function or by

direct measurements. Then, we can go on to constrain the cosmological parameters.

1.3.4 Counts in Cell and Self-Calibration

The equations outlined in the previous sections are basic recipes that we can use

to relate observational data and model parameters. However, measuring the power

spectrum from the Fourier inverse of the two point correlation is often numerically

noisy. Fortunately, we do not have to measure the power spectrum to compare it

with theory because the variance of the number counts are related to the power

spectrum (Hu & Kravtsov, 2003)
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< ninj > −n̄2 = n̄2b2
∫ d3k

(2π)3
Wi(k)Wj(k)P (k) (1.21)

where ni is the number of halos in cell i and n̄ is the mean number counts of halos

in each cell. Clearly, measuring the variance of the number counts is a lot more

tractable than measuring the power spectrum directly. Note that the mean number

counts n̄ can be calculated from Eq.1.17. For more details about how to execute these

calculations in realistic way, refer to Cunha (2008). In this way, we can integrate the

number counts and clustering together to compare with the counts and variance of

the counts of halos in each cell. This is in fact the practical way to relate data and

model parameters.

However, it is worth noting that such a scheme will lead to some loss of information

because of the cell division. Without prior knowledge of the optimal cell division

scheme, some useful information is lost. Therefore, although the counts in cell scheme

facilitates the comparison between data and theory, its application requires further

investigation into the optimal cell division for a given survey. If we try the direct

method instead of counts in cell, we will suffer from the noisy measurements of the

power spectrum. There is a trade off in terms of errors using different methods. But

a comparison should be good for better cosmological constraints.

From the above picture, one can see that the mean number counts and their

variance depend on cluster mass in different ways. If we combine the two pieces

of information together, we can self-calibrate the mass-observable relations, leading

to tighter constraints on the cosmological parameters (Majumdar & Mohr, 2004;

Hu, 2003; Lima & Hu, 2004). Figure 1.4 shows the improvement of cosmological

constraints using self-calibration.

1.3.5 Cluster Cosmology in Action

Given all the complexities and uncertainties, some initial work on cosmological con-

straints using optically selected clusters has been carried out based on the maxBCG

cluster catalog (Rozo et al., 2007b,a, 2009). The constraints on σ8 and ΩM are shown

in Figure 1.5.
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Figure 1.4. The cosmological constraints when using self-calibration. (a) is for a survey with
maximum redshift zmax = 1.0 and (b) is for zmax = 2.0. Fixed Mth means we have perfect
knowledge about the mass of the clusters. The plots are reproduced from (Lima & Hu, 2004).

Figure 1.5. Constraints on σ8 and ΩM from maxBCG and WMAP5 by assuming a spatially
flat ΛCDM cosmology. Contours show the 68% and 95% confidence regions for maxBCG (solid),
WMAP5 (dashed), and the combined results (filled ellipses). The thin axis of the maxBCG-only
ellipse corresponds to σ8(Ωm/0.25)0.41 = 0.832±0.033. The joint constraints are σ8 = 0.807±0.020
and Ωm = 0.265 ± 0.016 (one-sigma errors)(Rozo et al., 2009).
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No doubt, with more clusters and better estimated masses based on deeper and

multi-wavelength data, we can further improve the above constraints on cosmological

parameters. Particularly, clusters provide a an approach to constrain cosmological

parameters, which is complementary to SNeIa, BAO and CMB methods. Building

a large galaxy cluster catalog is an important step towards this goal. In the next

section, we will describe the major challenges of cluster detection in the optical band.

1.4 Optical Galaxy Cluster Detection

In order to use galaxy clusters for precision cosmology, a large cluster catalog with

high purity, completeness and well calibrated masses is indispensable. Galaxy clusters

can be detected at different wavelengths, such as the x-ray band, optical band and

microwave band, each yielding a unique mass-observable relation. Looking for galaxy

clusters in optical data enjoys high signal to noise, a large volume of available data,

less expensive experiment setups and fairly accurate redshift information. In this

section, we will briefly review the various optical cluster detection algorithms and

their pros and cons.

1.4.1 Generic Data Clustering Analysis

Before we delve into optical cluster detection, we will first look at the generic data

clustering analysis. Data clustering is a very generic problem in data mining, machine

learning and pattern recognition. It plays an important role in artificial intelligence.

Generally speaking, there are two basic types of clustering analysis methods: parti-

tional and hierarchical. In partitional clustering analysis, objects are partitioned into

non-overlapping groups and each object belongs to only one group. The number of

the groups are determined by minimizing cost functions that reflect the clustering

structures. In hierarchical analysis, objects are partitioned into nested groups based

on some linkage cuts in a progressive way and then organized as a hierarchical tree.

In Fig. 1.6, we show the two types of clustering analysis for some artificial data. It

is clear that both methods require a metric to allow distance between data points

to be calculated. Many methods also require that the data points belong to one of
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Figure 1.6. The hierarchical (left) and partitional (right) clustering analyses. The data are gen-
erated from x ∼ N(1, 0.32), N(0, 0.22), N(−1, 0.22) and y ∼ N(1, 0.32), N(0, 0.22), N(1.5, 0.22). For
the hierarchical clustering, we the clusters are divided based on the complete linkage, i.e. the
maximum distance between elements of each cluster. For the partitional clustering, we use kmean
algorithm. In both case, we use the Euclidean distance.

.

the clusters. In galaxy clustering analysis, we do not have precise distance measures.

Also, only a small fraction of all galaxies are clustered and most of them are not

clustered. These features make galaxy cluster detection a lot more complicated.

1.4.2 Galaxy Cluster Detection and De-projection

The fundamental challenge for optical galaxy cluster selection is that we are trying

to detect three dimensional clusters with precise information only in two dimensions

(RA/DEC). The huge uncertainties in galaxy positions along the line of sight lead

to projections, which deteriorate our richness estimates for all clusters and confuse

cluster detection as we go to lower richness systems. In Figure 1.7, we show a some-

what exaggerated situation to illustrate the effects of projection on cluster detection.

We use color to represent the third dimension information about the data points. If

we have different kinds of information on the third dimension, i.e. different colors,

we will have very different clustering results. In real optical cluster detection, though

we can get some information about the 3D clustering based on the clustering in the

projected RA/DEC plane, we need additional information to accurately recover 3D
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Figure 1.7. This plot is an exaggerated example of the effect of projection on clustering analyses.
Each dot has 3 dimensional information (x, y, color). If we change the color information, any
clustering algorithm will identify different objects.

clustering. Therefore, every optical cluster finding algorithm needs to effectively re-

move the projected field galaxies before calculating the over-density in the RA/DEC

plane.

Historically, the ability to locate the positions of galaxies along the line of sight is

limited by the technology available to that specific age. Abell (Abell, 1957) built his

cluster catalog by visually examining black and white photographs of the sky. The

clusters he identified are projected over-densities in the RA/DEC plane with certain

magnitude cuts. In this case, the magnitude cuts play the role of de-projecting the

field galaxies along the line of sight. However, due to the broad luminosity function
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of galaxies, magnitude can only roughly tell how far away the galaxy is. It becomes

less effective at resolving galaxy positions along the line of sight at higher redshift.

Before the advent of multi-color and wide-field digital imaging, magnitude was the

only way to de-project galaxies along the line of sight. This severely limited optical

cluster detection in the past.

Over the past 30 years, various algorithms for optical galaxy cluster detection have

been developed based on photometric data (Huchra & Geller, 1982; Davis et al., 1985;

Shectman, 1985; Efstathiou et al., 1988; Couch et al., 1991; Lidman & Peterson, 1996;

Postman et al., 1996; Kepner et al., 1999; Annis et al., 1999; Gladders & Yee, 2000,

2005; Gal et al., 2000, 2003; Kim et al., 2002; Goto et al., 2002; Ramella et al., 2002;

Lopes et al., 2004; Botzler et al., 2004; Berlind et al., 2006; Koester et al., 2007b; Li

& Yee, 2008). For a thorough recent review, please see Gal (2006). Though these

methods differ in many detailed respects, we can classify them according to the de-

projection methods they employ. In Table. 1.4.2, we list the major cluster finding

algorithms and the de-projection methods used.

The de-projection method used in a specific algorithm is affected by the properties

of the data available when the algorithm was developed. For early times, only sin-

gle band data were available and therefore the major de-projection methods were all

essentially magnitude based. Some of them use magnitude directly while others use

the photometric redshift (photoz) calculated from the magnitude. Since both magni-

tude and the photoz derived from it are poor indicators of the positions of galaxies

along the line of sight, these de-projection methods don’t work well for the non-local

Universe. Though they are quite effective for detecting massive clusters, they cannot

maintain good purity and completeness for clusters with lower/intermediate richness

across a wide redshift range. Moreover, the projection also creates large scatters in

the richness-mass relation derived from these methods.

With the advent of modern multi-band digital imaging technology, large scale

CCD imaging surveys greatly alleviate the projection effects that plagued optical

galaxy cluster detection. In a precise multi-band sky survey, we have magnitude

information from more than one band, allowing better reconstruction of the galaxy
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Algorithm Type of data applied De-projection method
Percolationa Single band/Simulation Magnitude/photoz

Smoothing Kernelsb Single band Magnitude
Adaptive Kernelc Single band Magnitude
Matched Filter d Single band Magnitude

Hybrid and Adaptive Matched Filtere Single band/multi-band Magnitude/photoz
Voronoi Tessellationf Multi-band Colors
Cut-and-Enhance g Multi-band Colors

Modified Friends of Friendsh Multi-band Photoz
C4i Multi-band All Colors

Percolation with Spectroscopic redshiftj Multi-Band Spectroscopic Redshift
Cluster Red Sequencek Multi-band Red sequence

MaxBCG l Multi-band Red sequence
GMBCG Multi-band Red sequence

Table 1.1. Summary of optical cluster finding algorithms

a Huchra & Geller (1982); Davis et al. (1985); Efstathiou et al. (1988); Ramella et al. (2002)

b Shectman (1985)

c Gal et al. (2000, 2003)

d Postman et al. (1996)

e Kepner et al. (1999); Kim et al. (2002); Dong et al. (2008)

f Kim et al. (2002); Lopes et al. (2004)

g Goto et al. (2002)

h Li & Yee (2008)

i Miller et al. (2005)

j Berlind et al. (2006)

k Gladders & Yee (2000, 2005)

l Annis et al. (1999); Koester et al. (2007a,b)
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Figure 1.8. We show the scatter of the two photoz estimators (photozcc2 and photozd1) from the
well tested neural network algorithms for the SDSS DR6 data (Oyaizu et al., 2007). Though the
algorithm is already well tuned, the two photozs still lead to a photoz difference of 0.1.

spectra. Even the crude Spectral Energy Distribution (SED) information provided

by colors provides very effective information for locating galaxies along the line of

sight.

The existence of 4000 Å break in the spectra of red elliptical galaxies makes

the color that contains the break strongly correlate with redshift. As a result, the

clustered galaxies are also tightly clustered in the corresponding color space, forming

the so called red sequence. They have narrow color scatter ( ∼ 0.05) and a slightly

tilted color magnitude relation, which has been measured precisely in Hao et al.

(2009). We leave a more detailed introduction about red sequence to Chapter 2.

There are basically two ways to de-project galaxies using the multi-color data: (1)

using multi-color data to obtain photometric redshifts or (2) using the color clustering

of red sequence galaxies directly. The first approach is very straightforward. There

are well tested Neural Network algorithms to assign photozs to galaxies based on the

multi-color data and these lead to errors ∼ 0.03 for bright galaxies (Oyaizu et al.,

2007). However, the photozs are not perfect. In particular, the error distribution

for photozs are often non-Gaussian, and limitations on training sets lead to bias in

photoz estimation for fainter and bluer galaxies.
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In Figure 1.8, we compare photozs based on two estimators from (Oyaizu et al.,

2007). The photozd1 is obtained by training only on the magnitudes while photozcc2

is obtained by training only on colors. The two photozs are in agreement by 0.1. Even

if the photoz precision for all galaxies was as good as 0.03, it is still not sufficient for

cluster member selection, because the member galaxies’ equivalent redshifts difference

should be about ±0.003 assuming a velocity dispersion of 900 km/sec. Therefore,

though it is a lot better than the magnitude based de-projection used in the early

days, using the photoz for de-projection has important limits, especially when training

sets remain limited.

As an alternative, we might stay closer to the data and look for clustering directly

in color space. Red sequence galaxies in clusters display a scatter in color ∼ 0.05. This

is comparable to the measurement errors on the colors from SDSS data. Therefore,

much of the information available to de-project field galaxies is already there in color

space. At this point, we need to address a perplexing question before we proceed.

Why do colors do better than photozs that are essentially derived from colors? In

particular, photozs are obtained by using multi-color/magnitudes while the ridgeline

color is only one color. This would suggest that photozs should do better than red

sequence colors.

To resolve this puzzle, we need to clarify two points. First, it is not always true

that more information leads to better results. When you have more information,

some of it is useful while other parts may be useless or even harmful. For the galaxy

photoz case, most of the leverage for obtaining photometric redshifts comes from the

4000 Å break as revealed in the galaxies’ colors. Other colors provide little informa-

tion while adding noise. Therefore, when using all color/magnitude, you essentially

need to supply additional information about which color is more informative than the

others. In practice, that means appropriate weights should be assigned to each col-

or/magnitude before combining them to get photozs. Second, there is a fundamental

limit on the precision of photozs from the all the machine learning algorithms. They

cannot achieve better results than the scatter existing in the training set. Especially,

when the training set is biased, the results can be significantly skewed for those ob-
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jects that are not well represented by the training set. For example, the faint blue

galaxies are not well represented in most spectroscopic training sets, which will make

their photozs a lot worse than those for bright red galaxies.

For red sequence colors, we have two additional pieces of information. One is spa-

tial clustering, because we normally look for red sequence around a cluster. Another

is that we can separate red sequence galaxies from the blue galaxies in advance of the

clustering analyses. For this combination of reasons, de-projection using red sequence

colors out-performs de-projection using photozs.

The major advantage of using red sequence color for de-projection is that we

can push the cluster detection to lower richness limits a lot better than we can do

using photozs. For very big clusters, one can find them with any means. But for

lower richness systems, appropriate de-projection is crucial for detection and richness

measurement. For cosmological constraints, clusters with a wide mass and redshift

range will provide substantially more leverage on cosmological parameters.
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CHAPTER 2

E/S0 Ridgeline Measurements Using Error

Corrected Gaussian Mixture Model

2.1 Overview of Red Sequence Galaxies

Modern multi-band digital imaging technology allows precise characterization of galaxy

color. The red-sequence is ubiquitous in the galaxy population (Hogg et al., 2004),

and the close mapping between apparent color and redshift for these galaxies provides

a powerful tool for reducing the effects of projection.

The predominantly red, bright, passively evolving red sequence, or “E/S0 ridge-

line” (Visvanathan & Sandage, 1977; Annis et al., 1999) found in the cores of clusters

of varied richness up to at least z ∼ 1.4 (Bower et al., 1992; Smail et al., 1998; van

Dokkum et al., 1998; Barrientos, 1999; Blakeslee et al., 2003; Mullis et al., 2005;

Eisenhardt et al., 2005; De Lucia et al., 2007) provide an efficient means for clus-

ter detection, and have become an integral part of modern cluster cosmology. The

red sequence itself is ubiquitous in the galaxy population (Renzini, 2006, e.g.), and

in clusters red sequence galaxies dominate the bright end of the cluster luminosity

function (Sandage et al., 1985; Barger et al., 1998). These galaxies are extremely

tightly clustered in color space, containing old populations of stars whose observed

color varies smoothly with redshift (e.g. Gladders & Yee, 2000). The pervasiveness

of this phenomenon in clusters minimizes projection effects, enabling efficient opti-

cal cluster detection and providing accurate photometric redshifts (Gladders & Yee,

2000; Koester et al., 2007b). Simple counting of photometrically identified cluster

red sequence galaxies (Koester et al., 2007a, e.g) has also been shown to be an ef-

fective proxy for cluster mass (Becker et al., 2007; Sheldon et al., 2007b; Johnston
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et al., 2007), with more sophisticated applications yielding improvements in richness

as a cluster mass proxy (Rozo et al., 2008a). In the era of precision cosmology, the

extent to which the red sequence can be exploited for cluster cosmology depends how

accurately its characteristics can be measured at a given redshift.

In addition to its relevance to cluster cosmology, the red sequence plays an impor-

tant role in constraining the complex physical processes that drive galaxy formation

and evolution at all scales. At the field scale this includes measurements of the red

galaxy luminosity function (Wake et al., 2006; Faber et al., 2007), the clustering

of red galaxies in various environments (Zehavi et al., 2005; Coil et al., 2008), and

color-magnitude relations of spectroscopically (Cool et al., 2006) and morphologically

identified early-type galaxies. The high density environments of clusters of galaxies

are dominated by red sequence galaxies. They dominate in the cores of rich clusters

to at least z ∼ 1 forms the basis for various monolithic collapse scenarios (e.g. Bower

et al., 1992; Blakeslee et al., 2003; Mei et al., 2009). Faber et al. (2007) summa-

rize some of these results to fill out a picture of galaxy formation that includes a

mechanism for the formation of the red sequence.

In color-magnitude space, the red sequence is typically characterized by slope,

zero point, and scatter. Various models posit that in the rest frame, the scatter in

the red sequence is driven primarily by age effects, its slope is a manifestation of

the mass-metallicity relation, and the zero point is set by combination of age and

mass-metallicity differences (e.g. Bernardi et al., 2005; De Lucia et al., 2007; Faber

et al., 2007)

Studies of the cluster red sequence have been undertaken in many cases by simply

measuring the photometric color-magnitude relation (e.g. López-Cruz et al., 2004; De

Lucia et al., 2007), supplemented with HST morphological information (e.g Gladders

et al., 1998) and sometimes with spectroscopy. Extra morphological and spectroscopic

data allow precise separation of E and S0-types from the rest of the galaxy popula-

tion, as well as refined identification of cluster members (Blakeslee et al., 2003; Mei

et al., 2009). The situation also benefits significantly from precise color measurements

afforded by deep, CCD-based imaging (e.g van Dokkum et al., 1998). In the litera-
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ture, the red sequence has been measured with various levels of scrutiny in dozens of

individual clusters.

In the past several years, researchers have turned to the considerable resources

of the Sloan Digital Sky Survey (SDSS) and similar wide field surveys to probe the

red sequence of field galaxies and the red sequence of ellitptical galaxies in vari-

ous environments (Hogg et al., 2004; Bernardi et al., 2005, 2006; Cool et al., 2006).

These studies have included both spectroscopically and morphologically identified

red galaxies at z ∼ 0.1, and that aim to constrain galaxy evolution scenarios to the

cosmologically-relevant luminous red galaxy (LRG) samples extending to z ∼ 0.6

(e.g. Cool et al., 2006).

The maxBCG cluster catalog (Koester et al., 2007a) is the largest optical galaxy

cluster catalog based on the photometric data from Sloan Digital Sky Survey. The

clusters are identified using the maxBCG algorithm, which is a variant of a matched

filter algorithm with the inclusion of color filters based on the red sequence galaxy (Koester

et al., 2007b). The clusters in the maxBCG catalog range from redshift 0.1 to 0.3

in an approximately volume limited way. With the maxBCG cluster catalog, we are

positioned to use the SDSS to make among the most statistically robust photomet-

ric measurements of the cluster red sequence, using nearly 14,000 clusters between

0.1 ≤ z ≤ 0.3. In this chapter we focus on the slope and scatter of the red se-

quence. While the maxBCG sample affords exquisite precision, we show clearly the

systematic effects photometric errors can have on the measurement of the underlying

slope and scatter of the red sequence, and introduce a method for properly handling

these effects. This method, based on an Error-Corrected Gaussian Mixture Model

(ECGMM, see section 2.3), reliably recovers the properties of the ridgeline by taking

measurement errors into account. After presenting the method, we describe its ap-

plication to the measurement of maxBCG clusters. Of particular relevance to cluster

cosmology are the observed mean, scatter, and slope of the E/S0 ridgeline for all

maxBCG clusters. These results are presented, along with a discussion of observed

trends with redshift.
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2.2 Intrinsic Properties of the Red Sequence Ridgeline

The red sequence ridgeline in galaxy clusters shows that cluster galaxies condense

in color space in addition to real space. The old stellar populations which dominate

emission from early-type galaxies give rise to remarkably similar galaxy colors. The

close mapping between galaxy color and redshift for these galaxies is primarily a result

of the restframe 4000 Å break in their spectra, and thus the most informative color

for cluster finding at a given redshift depends on where the 4000 Å break resides.

For the SDSS filter sets, the 4000 Å break will be well within the g band as long as

the redshift is below 0.35. So, the the most informative SDSS color for the clusters

in the maxBCG catalog is g − r.

In the vicinity of a detected cluster, there are both cluster member galaxies and

projected field galaxies. Red sequence galaxies form a part of the member population,

whose colors are clustered tightly and can be approximated with a Gaussian distribu-

tion with narrow width. On the other hand, the field galaxy and blue member galaxy

colors are not tightly clustered and could be approximated by a Gaussian distribution

with a broader width1. The problem of separating the ridgeline from the field can be

specified as following: What are the two Gaussian components (one for the ridgeline

and one for the field) that represent the color distribution in the vicinity of a galaxy

cluster? If this double Gaussian is an adequate model for describing the overall color

distribution, the one dimensional Gausian Mixture Model (GMM) is well suited to

the problem.

In the traditional applications of GMM, measurement errors are not considered.

In our case, there are non-negligible measurement errors associated with the galaxy

colors. We are interested in measuring the intrinsic color scatter of cluster members,

absent contamination by the increasing measurement errors of faint galaxies. Without

accounting for these errors, one can expect observed color scatter to increase as the

1There are complicated situations where the distribution in color space is not simply unimodal or
bimodal, for example when two clusters are seen in projection. For maxBCG clusters, the redshift
range is only from 0.1 to 0.3. Since an 0.4 L* magnitude cut is also applied, the chance of two or
more overlapped clusters is low. Therefore, a unimodal or bimodal distribution in color space is a
good approximation.
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measurement errors become larger. While the intrinsic color scatter may increase as

redshift increases (because the 4000 Å line break is shifting toward r band and making

the g − r color less discriminative.), measurement errors may make us overestimate

the increase in intrinsic scatter with redshift. To avoid this problem, we include

measurement error into our mixture model likelihood function. We will call this an

Error-Corrected Gaussian Mixture Model (ECGMM) and derive the corresponding

Expectation Maximization (EM) recursive relation in the following section.

2.3 Error Corrected Gaussian Mixture Model

2.3.1 The Expectation Maximization Algorithm

In this section we present the details of the ECGMM used in this thesis for ridge-

line studies. In what follows, we describe how to fit a multicomponent Gaussian

mixture model to a one dimensional distribution of data with both intrinsic scatter

and measurement error. Our method is a extension of the traditional expectation

maximization method for GMM (Dempster et al., 1977).

Assume the data are to be modeled by a mixture of N Gaussians fit to the

distribution of M data points. Subscript i cycles through N and j cycles through

M . We use µi, σi and wi to denote the location, width and weight of each Gaussian

component. yj and δj denote the data points and their measurement errors. For

brevity, we denote the parameters (µi, σi and wi) collectively by θ. The likelihood of

the parameters given the data and measurement errors is then:

L(θ|y) =
M
∏

j=1

[

N
∑

i=1

wi
√

2π(σ2
i + δ2

j )
exp

(

− (yj − µi)
2

2(σ2
i + δ2

j )

)]

(2.1)

The optimal parameters θ can be estimated by maximizing the above likelihood

function. The Expectation Maximization algorithm provides an efficient way to get

the maximum likelihood estimators in such a setting. To utilize this, we need to

introduce a hidden variable, zj, which tells which Gaussian component the data point

yj is sampled from. In our case, unlike the standard EM prescription, we have non-

negligible measurement errors present. In the following, we will show the derivation
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Variable notation Meaning
y1,..., yj, ..., ym: Colors of BCGs and member galaxies.
z1,..., zj, ..., zm: Hidden variables that tell which Gaussian

component the yj is sampled from.
δ1,..., δj,..., δm: Measurement errors for every yj.

µ1, ..., µi, ..., µn: Mean of each Gaussian component.
σ1, ..., σi, ..., σn: Width of each Gaussian component.
w1, ..., wi, ..., wn: Weights of corresponding Gaussian components.

Table 2.1. The notations used in our derivation of ECGMM algorithm

of the iteration relation of the parameters that can maximize the likelihood 2.1.

We introduce the notations as shown in Table.2.1. The parameter t represents the

tth iteration. The likelihood of the parameters given the data after convolving with

the measurement errors is given by Eq.2.1. The optimal parameters can be obtained

by maximizing the above likelihood. However, if we introduce hidden variables, z,

that tell us which Gaussian component the yj is sampled from, then the maximization

process is significantly simplified. The corresponding pdf of data given z and θ is

p(y|zj = i, θ(t)) =
M
∏

j=1

p(yj|zj = i, θ
(t)
i ) =

M
∏

j=1

1
√

2π(σ
(t)2
i + δ2

j )
exp

[

− (yj − µ
(t)
i )2

2(σ
(t)2
i + δ2

j )

]

(2.2)

The weight of each Gaussian Component in the mixture is given by wi = p(zj = i|θ).
The estimation of hidden variable can be related to Eq.2.2 by the Bayes formula as

follows:

p(zj = i|yj, θ
(t)) =

p(zj = i, yj|θ(t))

p(yj|θ(t))
=

p(yj|zj = i, θ(t))p(zj = i|θ(t))
∑N

i=1 p(yj|zj = i, θ(t))p(zj = i|θ(t))
(2.3)

The EM algorithm iteratively update the parameters θ by maximizing the ex-

pected log likelihood
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Q(θ) =
N
∑

i=1

M
∑

j=1

p(zj = i|yj, θ
(t))

[

−1

2
ln(2π)−1

2
ln(σ2

i +δ2
j )−

(yj − µi)
2

2(σ2
i + δ2

j )
+ln p(zj = i|θ(t))

]

(2.4)

under the constraint
∑N

i=1 p(zj = i|θ(t)) = 1. Using the Lagrange Multiplier approach,

we redefine

Q̃(θ) = Q(θ) − λ

[

N
∑

i=1

p(zj = i|θ(t)) − 1

]

(2.5)

with λ as the multiplier.

∂Q̃(θ)

∂µi

=
M
∑

j=1

[

p(zj = i|yj, θ
(t))

(

yj − µi

σ2
i + δ2

j

)]

= 0 (2.6)

From Eq.2.6, we can arrive at the following recursive relation for µ:

µ
(t+1)
i =

∑M
j=1 yjp(zj = i|yj, θ

(t)
i )/(1 + δ2

j /σ
(t)2
i )

∑M
j=1 p(zj = i|yj, θ

(t)
i )/(1 + δ2

j /σ
(t)2
i )

(2.7)

Similarly, we have

∂Q̃(θ)

∂σi

=
M
∑

j=1

p(zj = i|yj, θ
(t))

[

σ2
i (1 + δ2

j /σ
2
i ) − (yj − µi)

2

σ4
i (1 + δ2

j /σ
2
i )

2

]

= 0 (2.8)

Note that since σi and δj are entagled within the summation, there is not a simple

analytic solution for σi. However, since the algorithms are iterative in nature and

the major contribution for the update of σi is from (yj −µi)
2, we can approximate σi

in δ2
j /σ

2
i with its value in tth iteration. Then we can solve for the (t + 1)th iteration

relation for σi as:

σ
(t+1)
i =

[
∑M

j=1(yj − µi)
2p(zj = i|yj, θ

(t)
i )/(1 + δ2

j /σ
(t)2
i )

∑M
j=1 p(zj = i|yj, θ

(t)
i )/(1 + δ2

j /σ
(t)2
i )

]1/2

(2.9)

Our numerical test shows that such an approximation works fine in practice. For

wi = p(zj = i|θ), we have
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∂Q̃(θ)

∂wi

=
M
∑

j=1

p(zj = i|yj, θ
(t))/wi − λ = 0 (2.10)

which leads to

wi = p(zj = i|θ) =
1

λ

M
∑

j=1

p(zj = i|yj, θ
(t)) (2.11)

Using the condition
∑

wi = 1, we have λ = M . Substitute λ back to Eq. 2.11, we

arrive at:

w
(t+1)
i =

1

M

M
∑

j=1

p(zj = i|yj, θ
(t)
i ) (2.12)

In the above iteration relations Eq.2.7, Eq.2.9 and Eq.2.12, t and t+1 denote the

round of iterations. When we ignore the measurement errors δj, the above recursive

relation reduces to the standard EM recursive relation for Gaussian Mixture Model.

The above relations are easily generalized to the multivariate case by simply replacing

the data with data matrix, the mean with a mean vector and the variance with a

covariance matrix.

It is likely that we can also improve the fit by adding more Gaussian components,

although this is clearly not good in the sense of parsimony. So, we need to somehow

decide on the number of Gaussian components by trading off quality of fit against

the number of introduced free parameters. To accomplish this, we use the Bayesian

Information Criterion (BIC) (Schwarz, 1978; Connolly et al., 2000) to determine how

many mixtures we should use. The BIC is defined as:

BIC = −2 logLmax + k log(M) (2.13)

Where k is the number of free parameters. For mixture models with different number

of mixtures, we compare corresponding BICs, and select the model with the smallest

BIC.
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2.3.2 Monte Carlo Test of The ECGMM

Before we delve into real data, we first conduct some Monte Carlo tests to see whether

the ECGMM approach can reliably identify the cluster and background Gaussian

components. These tests are used to determine whether this method can reliably

recover the true parameters input in the simulation, and to see whether the extracted

parameters are generally unbiased for varying levels of measurement error.

For this purpose, we generate two Gaussian random data sets, one representing

cluster member colors, denoted CL, and the other representing the field galaxies/blue

galaxies’ colors, denoted as BG. The CL set is generated from N(0.5, 0.042) and the

BG set is generated from N(0, 0.32). To represent clusters with different richness, we

allow the normalization (also denoted as Ngals in the plots) of CL data set to vary

as 10, 15, 20, 25, 30, 40, 50, 60 and 70 while keeping the normalization of the BG

set as 30. These numbers are chosen to make the simulation as close to the real data

as possible. Then we combine CL and BG to create mock data sets that mimic the

colors of both cluster members and background galaxies in a field. It is worth noting

that these mock colors are error free so far. Next, we will add some noise to them to

mimic the measurements errors. To do this, we first generate random numbers from

a uniform distribution in the range of [0, 0.1], which play the role of δj in Eq.2.1.

Then, we generate from N(0, δ2
j ) and add them to the noise free data set to produce a

noise added mock color data set. In Figure 2.1, we plot the results from the ECGMM

fitting. The results show that for clusters with Ngals ≥ 10, the method gives very

reliable estimates for the locations (µ) and widths (σ) of the Gaussian components.

Next we test for possible bias in the estimators. For each cluster richness Ngals,

we replicate the data as well as errors 200 times and then apply our methods to

each to obtain estimates for the parameters. In each case, we calculate the bias of

parameters θ (the σ and µ in our case) defined as E(θ̂) − θ. In Figure 2.2, we plot

the results from both GMM and ECGMM for comparison. Clearly, the introduction

of error correction(as shown in the bottom two panels) is essential for removal of the

bias of the width resulting from measurement error(as shown in the top two panels).
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Figure 2.1. The ECGMM fitting to the mock color’s distribution. µ and σ denote the locations
and widths of the corresponding Gaussian components. The true µ are 0 and 0.5 for BG and CL
sets respectively. The true σ are 0.3 and 0.04 for BG and CL sets respectively.
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Figure 2.2. Monte Carlo test of the bias, (E(θ̂) − θ), of the GMM estimators for the location and
width using GMM (bottom two panels) and ECGMM (top two panels) as a function of richness for
the cluster component of the mock clusters (see text).
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2.3.3 Bootstrapping to Increase The Robustness of ECGMM

Though the ECGMM is generally quite stable for identifying the parameters of the

Gaussian Components, it can fail occasionally due to a very inappropriate choice

of initial parameters or some very large measurement errors for certain galaxies. To

make our measurement more robust, we introduced a bootstrap-like scheme. Suppose

we have N data points. We randomly pick one of the data points and record it.

We then repeat this process N times and get N recorded data points. These N

points form one resampling set of the original data set. Now, we apply the ECGMM

to this new data sample and measure the corresponding parameters. After this,

we start a second round, getting another resampling set with N data points in it

and measure the parameters using ECGMM again. We repeat this process X times

and obtain X estimates of each parameter. We throw away those outlier estimates

(estimates beyond the upper and lower inner fences2) for each parameter and use

the mean of good estimates as the value of each parameter. Using this scheme, our

resulting parameter estimates are much more robust, at a cost of a tolerable increase

in computation time. In this application, we took X to be 50.

2.4 Precision Measurements of E/S0 Ridgeline for MaxBCG

Clusters

2.4.1 Evolution of Ridgeline and Its Width

We apply the above prescriptions of ECGMM to the maxBCG catalog (Koester

et al., 2007a), measuring the red sequence g − r ridgeline. The procedures are as

follows: for each cluster in maxBCG catalog, we choose a scaled aperture Rlens
200 to

ensure we are considering equivalent regions of clusters of varied masses and therefore

varied richness. Rlens
200 is the critical radius, interior to which the mean mass density

of the cluster is 200 times of the critical energy density of the Universe. Based on

the weak lensing analysis (Johnston et al., 2007; Hansen et al., 2007), the scaling

2In statistics, the lower inner fence is defined by Q1 − 1.5IQR and higher inner fence is Q3 +
1.5IQR, where Q1 and Q3 are the first and third quartiles respectively. The IQR is the interquartile
range, defined as Q3 − Q1.
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relation between Rlens
200 and the original maxBCG richness N200 is given by Rlens

200 =

0.182(N200)
0.42.

Next, we identify all SDSS galaxies inside this aperture range, fainter than the

BCG, and brighter than 0.4 L* at the redshift of the cluster. Then, we apply the

ECGMM procedure to the g − r colors and corresponding measurement errors of

these galaxies. One of the resulting two Gaussian components from the ECGMM will

represent the cluster red sequence color distribution while the other represents the

background/blue galaxy color distribution. To determine which Gaussian Component

belongs to the cluster, we calculate the likelihood of the BCG’s g − r color for each

Gaussian Component. The component for which the BCG has a higher likelihood is

assigned as the cluster component and the other is declared background.

For comparison, we measure the red-sequence location and width using both or-

dinary GMM and ECGMM. The top panel of Fig. 2.3 shows the evolution of the

average g-r ridgeline location and width measured using ordinary GMM. We observe

the well-known trend in the average ridgeline zeropoint. In addition, there is strong

apparent evolution in the average ridgeline width, which becomes nearly 100% larger

by z = 0.3. However, from the lower two panels which are measured using ECGMM,

one can see very clearly the power of ECGMM in constraining the intrinsic width of

the ridgeline without contamination from measurement error. The results show that

the mean observed g − r ridgeline location retains the same linear dependence on

redshift while the mean width of the ridgeline shows a weak dependence on redshift,

with the g− r scatter σ(z = 0.1) = 0.044± 0.001 and σ(z = 0.3) = 0.057± 0.002 or a

broadening by ∼ 20% from z = 0.1 to z = 0.3. Unsurprisingly, the strong dependence

of the scatter on redshift from the GMM is mostly due to the increased measurement

errors for cluster members at higher redshift.

2.4.2 Ridgeline Tilt From Galaxy Clusters

It has been pointed out that the color-magnitude relation (CMR) of cluster member

galaxies has a negative slope (e.g Kodama & Arimoto, 1997; Gladders et al., 1998), so

that fainter member galaxes are generally bluer. The evolution of these CMR slopes
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Figure 2.3. Tracking the (g − r) red sequence zeropoint and width as a function of redshift,
measured using ordinary GMM (upper panels) and ECGMM (lower panels) respectively. After error
correction, the broadening of the observed red-sequence width with redshift is greatly suppressed,
revealing the effect of photometric errors on the observed broadening.
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with respect to redshift and richness has been difficult to address, largely due to the

lack of a sufficiently large cluster catalog with well measured photometry for all its

galaxies. The maxBCG catalog provides about 14,000 galaxy clusters, extending over

0.1 < z < 0.3, which enables us to measure the slope of the CMR for clusters with

good statistics across a range in both richness and redshift.

Measurement of the slope of the CMR typically proceeds by identification of

the cluster red-sequence, followed by some iterative process of outlier removal, and

a determination of cluster “member” galaxies which are then used to measure the

slope and zeropoint of the CMR. We apply the method described in previous sections

to measure the color distribution of individual clusters and to select the members

for every cluster by requiring the color difference between each member galaxy and

ridgeline color to be less than ±2σ (σ is the convolved ridgeline width, given by

the best-fit ECGMM, and measurement errors of individual member galaxy’s color).

We choose 2σ because this is roughly where the background component’s likelihood

dominates over the cluster component’s likelihood. Based on this identification of

membership driven by the ECGMM, we fit the members in the CMR of every cluster

with a straight line and call its slope as the slope of ridgeline in what follows.

The distribution of ridgeline slopes for maxBCG clusters are shown in Figure 2.4

in bins of ∆z = 0.03. Despite the substantial scatter in slope among individual

clusters, we can see from Figure 2.4 and Figure 2.5 that the mean slope of the red

sequence ridgelines for clusters deviates from zero for 0.1 < z < 0.3. For any bin, the

error on the mean places the measurement many σ from zero.

In Figure 2.5, it is apparent that the observed trend of the mean ridgeline slope

with redshift is statistically significant (about 15 σ different from 0): the slope be-

comes steeper by a factor of 2.5 by z = 0.3. In Figure 2.6, we plot the evolution

of the slopes vs richness in each redshift slice, which shows that the dependencies

of ridgeline slope with respect to richness is weak, as observed elsewhere (e.g. Hogg

et al., 2004). Clearly, the observed slope of the red-sequence is not associated with

cluster richness, and is unsurprisingly a strong function of redshift.
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Figure 2.4. The distributions of measured ridgeline slopes for clusters in steps of 0.03 in redshift.
µ and σ denote the mean and width of the distribution The dashed line corresponds to zero.
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Figure 2.5. Tracking the observed red-sequence slope vs redshift. The gray clouds represent the
slope measurements from individual clusters. The black solid circles and error bars (too small to be
seen on the plot) are the weighted mean and the standard deviation to the weighted mean for each
redshift bin (∆ = 0.03).

2.4.3 Ridgeline Tilt from Spectroscopic Data

The above measurement is based only on a photometric determination of red sequence

galaxies. The level to which projection plays into this selection is as yet unknown.

The true red-sequence galaxy population in some physical volume, either in a cluster

or in the field, is contaminated by dusty foreground galaxies which can be rejected

via spectroscopy, and by the peculiar velocities of the galaxies themselves.

To address the possibility of foreground contamination, it is interesting to see if

the above results are preserved in a spectroscopic sample of galaxies. To achieve

this goal, we use galaxies with spectra from DR6 of the SDSS Value Added Galaxy

Catalog (VAGC) (Blanton et al., 2005) for a comparison. Due to the selection effects

of the spectroscopic data, we will choose only the galaxies with redshift from 0.1 to

0.20 and brighter than 0.4 L* magnitude at their respective redshifts.

By extension from the photometric sample and from previous work, we know that

the slope does not vary with environment, so the field sample represented by our

spectroscopy should be a fair representation of the expected slope in clusters.
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Figure 2.6. The evolution of mean ridgeline slope vs richness at different redshift slices. The
richness bins brackets are chosen as N200 =[10,20,30,40,60,80,161]. The light dark points are from
individual clusters. The black solid dots and error bars are weighted mean and standard deviation
of the slopes in each Ngals bin for every redshift slice. Given the low statistics at rich bins, we did
not see strong trends of the slope evolution w.r.t richness.

Our procedures are as follows: we first bin the galaxies into bins of size ∆z = 0.003,

which corresponds to velocity slices of 900km/sec. The color distribution of the

galaxies in each bin shows clear bimodality (to panel of Fig. 2.7). Then, we separate

the red sequence galaxies in each bin using ECGMM. The red sequence galaxies

correspond to the Gaussian component with bigger g − r value and we choose ±2σ

from the peak location as red galaxy samples for each redshift slice, in a fashion similar

to the one we used for cluster galaxies. Then, we fit the CMR of galaxies’ g−r colors

and i-band magnitude with a line in every bin, recording their corresponding mean
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and slope. In the bottom panel Figure 2.7, we choose 6 redshift bins (∆z = 0.003)

to illustrate the red/blue galaxy separation and the ridgeline slope fitting in each

bin. Finally, we fit the variation of slope with redshift with a line to look for a

trend. The results are shown in the left panel of Figure 2.8. As a comparison to the

cluster sample, we also plot the mean variation of the ridgeline slope for clusters in

the same redshift range [0.1, 0.2] in the right panel of Figure 2.8. When the redshift

range is changed, the slope of the fitted line for the cluster sample becomes steeper

as compared to Figure 2.5. The reason lies in that the linear fit to the trend is only

the first order approximation. For our purpose here, we just need to require that

the cluster sample and spectroscopic sample have the same redshift range so as to

compare them fairly.

A comparison shows that the slope from spectroscopic and cluster samples differ

by ≃ 20% on the g − r vs. i slope at z ≃ 0.1: −0.013 vs. −0.010 and by about the

same amount at z = 0.2. The trend with redshift is similar in both samples, but the

slopes are generally steeper in the spectroscopic sample.

2.4.4 Possible Reasons for The Evolution of Ridgeline Slope

Based on the measurement results in previous sections, we have the following obser-

vations: i) The mean slope of CMR is negative and it become more and more negative

as redshift increases. This is in agreement with the results in Gladders et al. (1998).

ii) The slopes are almost independent of cluster richness. Even the non-clustered

spectroscopic data show similar slopes and redshift dependence.

What can we learn from this? The origin of negative slope in the CMR has been

considered mainly to be a result of the initial mass-metallicity enrichment difference

among elliptical galaxies of different masses (Gladders et al., 1998). The ages of

galaxies are also thought to be partially responsible for the ridgeline tilt, but play a

minor role compared to metallicity.

As for the redshift evolution of the slopes, we need to make it clear that the mea-

sured slopes are sensitively dependent on the galaxy populations considered. The

colors of galaxies in a narrow redshift slice (∼ 0.003) show bimodality. The ridgeline
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Figure 2.7. Evaluating the ECGMM-derived red sequence slopes in SDSS spectroscopy of field
galaxies. The normalized color histograms (top panel) for ∆z = 0.003 slices in spectroscopic redshift
clearly show the presence of the red and blue components in the field galaxy distribution. ECGMM
is used to separate the two components, the redder of which is to measure the CMR (bottom panel).
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Figure 2.8. The comparison of the evolution of the slopes of CMR for the spectroscopic sample
and the cluster sample. Since the spectroscopic sample is biased due to selection effects at z ≥ 0.2,
we just plot both samples in the redshift range from 0.1 to 0.2.

slope is basically meaningful only for red sequence galaxies. Then, the issue is how

to isolate (or select) the red sequence galaxies. Generally, the red sequence galaxies

are separated in terms of the color bimodality, i.e. the red component of the bi-

modal distribution. However, the red galaxies selected in terms of the color cannot

guarantee the same population of galaxies in terms of other physical properties, such

as metallicity, age and SFR, across the whole redshift range. This is likely a major

reason for the change in slopes as redshift increases.

To show this quantitatively, we use a star formation rate (SFR) cut in addition to

the color cut to select the red galaxies on spectroscopic data. The SFR measurement

we used Brinchmann et al. (2004),is cross matched with the spectroscopic data we

used in section 2.4.3. As we increase our cuts on SFR to include only older and deader

galaxies, the ridgeline slope evolution with redshift become milder and milder. The

resulting plot is Figure 2.9.

2.4.5 Discussion

To this point, the measurements have been presented in the observed frame and

stand alone. Photometric cluster detection and the quantities derived (e.g. richness)
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Figure 2.9. The evolution of ridgeline slope for different star formation rate (SFR) cuts. The
evolution becomes milder as we cut off those galaxies with higher SFR. Due to the limitation of the
available data, we cannot cut more to further reduce the slope, but we expect the slope can go to
zero if we remove those high SFR galaxies completely and consistently across redshift.

operate in the frame of the observer, and predictions from galaxy formation models

and mock galaxy catalogs can be evaluated in light of these precision measurements.

They have particular applicability to calibration of optical cluster detection efforts,

especially to those that rely on the properties of the red sequence. The methodologies

developed herein allow the “bootstrapping” of optical algorithms: basic cluster find-

ers locate the clusters, and precision measurements (such as these) of said clusters

lead to refinements in those algorithms. For illustrative purposes, we list the relevant

observational considerations to be made in understanding the context of these mea-

surements with respect to previous work in the literature, and then highlight a few

of our more interesting results.

In general, there are five places where the comparison to previous work must

be treated with caution, which can be summarized as follows: 1) redshifting of the

galaxy spectra through the bandpasses under consideration, which imparts trends in

the observed colors, 2) selection effects imposed by the color selection (e.g. Franzetti

et al., 2007), 3) aperture effects, i.e. the aperture used to measure the color in different

banspasses (e.g. Scodeggio, 2001; Blakeslee et al., 2006), 4) projection effects. 5)
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actual evolution in the red sequence.

At some level, any of the aforementioned issues may play into our results: (i) at

z ≃ 0.1, the CMR of photometrically-selected galaxies is noticeably shallower than

previous spectroscopic measurements of the color magnitude relation (Hogg et al.,

2004; Cool et al., 2006), (ii) the slopes are almost independent of cluster richness;

(iii) the photometric error-corrected scatter of the red-sequence broadens mildy with

redshift; (iv) the observed mean slope of the CMR is negative and it becomes more

negative as redshift increases.

Naively, we expect that our measurement of the slope of the red-sequence, −0.013±
0.003 mags mag−1 at z = 0.1 corresponds to the SDSS spectroscopic analysis of Hogg

et al. (2004), for which the slope is -0.022 mags mag−1 in 0.1(g − r). In addition to

the fact that the Hogg et al. (2004) measurements are corrected to the z = 0.1 rest-

frame, one possible difference comes from our definition of the red sequence: Hogg

et al. (2004) use a 2σ clipping algorithm to define the red sequence and to iteratively

reject outliers. While they split the sample by Sersic index, sigma-clipping may be

more permissive of objects near the “blue cloud” to be included in the red-sequence,

while the method presented in this thesis automatically accounts for the presence

of these objects. Our slope measurements at a given redshift may also be biased

shallow, as the initial 2 σ cut derived from the ECGMM fit does not account for the

slope in the red-sequence itself, i.e. the cut is applied in the same way regardless of

magnitude. Ideally, an iterative procedure would be employed to determine the best-

fit line for each cluster and the 2σ cut would be applied as a function of magnitude.

Unfortunately, the small number statistics for low richness clusters do not permit this

to be implemented in a robust fashion.

Insofar as richness and local density are similar indicators of environment, the

second observation (ii) that the slope is almost independent of environment is in basic

agreement with Hogg et al. (2004), who use SDSS spectroscopy at z ∼ 0.1 to compare

galaxies with high (n ≥ 2) Sersic indicies in different environments characterized by

their local density.

After the photometric error correction is performed by ECGMM, a trend in the
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scatter with redshift remains (iii), such that the scatter increases with increasing

redshift. At high redshift z ≃ 1, the color-magnitude relation has been measured in a

handful of clusters (Mei et al., 2009; Koester et al., 2009; Santos et al., 2009, e.g.) with

the general conclusion that the restframe scatter in the CMR does not evolve with

redshift. More locally, the SDSS Luminous Red Galaxy (LRG) sample has been used

to measure various redshifted frames of bright (L & 2.2L∗) red galaxies (Cool et al.,

2006). Cool et al. (2006) find the intrinsic rest-frame scatter 0.16(g − r) = 35.4 ± 3.7

and 0.37(g − r) = 43.5 ± 6.2 mmags mag−1, consistent with no evolution. However,

our own observed frame measurements reveal an increase in the scatter of ≃ 20%

over a similar time period. The ultimate explanation for this discrepancy is likely

found in the observed CMR steepening with increasing redshift. Because we can not

robustly subtract off the CMR for individual clusters, the measured width of the color

distribution of the CMR will be broadened by the increasing tilt of the CMR.

Result (iv) is in qualitative agreement with the results in Gladders et al. (1998)

who find a similar trend in the slope for a sample of 44 Abell clusters at z ≤ 0.15 and

6 clusters at 0.2 ≤ z ≤ 0.75, the largest previous study of its kind. In their study of

the scatter of the CMR in LRGs, Cool et al. (2006) report no significant trend with

redshift in the rest-frame slope of LRGs over 0.16 < z < 0.37 in either the cluster

or the field, but caution that the sample is not-well suited to measuring the slope.

The observed factor of 2.5 increase in the magnitude in our measurement of the slope

is likely due to a combination of the lack of k-corrections and selection effects (e.g.

Franzetti et al., 2007) derived from color cuts that may preferentially include a larger

and larger fraction of galaxies with siginificant star-formation at increasing redshifts.

A further contribution to the inflated slope may come from the choice of the color

aperture. van Dokkum et al. (1998) and Scodeggio (2001) note the importance of

the use of adaptive apertures, which place the color measurements of large and small

galaxies on the same footing. This point motivates our choice of MODEL MAGS from

the SDSS, which are derived from the best-fit convolution of the local PSF with a

deVaucoleurs model in the r-band. This same best-fit model is then used to compute

the flux in both the g and r-bands.
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2.5 Summary

In this chapter, we’ve presented the ECGMM, a new purely photometric method

which characterizes the red sequence ridgeline in large statistical cluster samples.

This provides precise measures of the mean variation of the red sequence ridgeline

location and width with respect to redshift, properly corrected for photometric errors.

The measured slopes, scatters, and zeropoints are directly applicable to improved

cluster finding efforts and to characterization of known galaxy clusters.

Applying the method to maxBCG clusters approximately recovers known proper-

ties of the red sequence, namely its slope and the variation of the slope with redshift,

and the insensitivity of the slope to environment. It also preliminarily suggests that

the width of the red-sequence increases with redshift, and that the slope of the red-

sequence grows substantially by z ≃ 0.3, but we caution that these observed trends

may be attributable to a host of observational effects that we have made no attempt

to correct. Color selection effects, the lack of k-corrections, and the details of the

measurement of the individual cluster CMRs require proper attention before apply-

ing these results to models of galaxy formation.
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CHAPTER 3

GMBCG Algorithm for Optical Cluster Detection

3.1 Overview

As pointed out in the previous section, de-projecting the field galaxies is crucial for

efficient optical cluster detection. Red sequence galaxies in clusters are clustered

tightly in color space in addition to the ra/dec plane, providing a robust way to de-

project field galaxies. Therefore, if we can identify red sequence clustering in color

space and then combine it with clustering in the ra/dec plane, we will be able to

single out clusters with minimum contamination from projection.

Galaxies’ color distribution around a cluster can be well approximated by a mix-

ture of two Gaussian distributions. The redder and narrower Gaussian distribution

corresponds to the color distribution of the cluster’s red sequence members, while the

bluer and wider one corresponds to the background galaxies’ color distribution. If

there is no cluster, then the color space will be a single Gaussian distribution with

a wider width because there is no red sequence component. Therefore, we can fit

the color distribution with mixtures of Gaussians, and use certain criterion (we use

Bayesian Information Criterion in this project) to determine how many mixtures give

the best fit. This can tell us whether there is red sequence clustering in color space.

One complication in our case is that errors in the measurement of colors are not

negligible and proper modeling of them is essential for proper fitting of the mixture

models. The traditional Gaussian Mixture Model does not consider the measurement

errors and we therefore developed an error corrected Gaussian Mixture Model to in-

clude them (Hao et al., 2009). It has been applied to measure the ridgeline properties

of maxBCG clusters, leading to precise and unbiased information about the evolution
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Table 3.1. The ridgeline color in different redshift ranges for SDSS filters

Ridgeline Color: g-r r-i i-z
Redshift Range: 0.0 ∼ 0.35 0.35 ∼ 0.70 0.70 ∼ 1.0

of the E/S0 ridgeline and its width.

As long as we single out the red sequence galaxies, we will reduce the problem to a

clustering analysis on the ra/dec plane. One can then use either parametric (such as

convolving a model kernel) or non-parametric (such as Voronoi Tessellation) methods

to analyze the clustering. The key part is separating the red sequence galaxies. When

we apply such a scheme to data spanning a wide redshift range, there are four other

complications to consider.

The first is that as redshift increases, the E/S0 ridgeline color changes accordingly.

This is mainly a result of the 4000 Å break shifting across the color filters. Because of

this effect, the most informative color (ridgeline color) will vary as redshift increases.

For the set of SDSS filters, the relation between ridgeline color and redshift is shown

in Table. 3.1

Beyond z ∼ 1.0, one needs infrared color information, such as Y, J or K. Therefore,

when detecting clusters in data spanning a wide redshift range, it is necessary to

determine which ridgeline color we should work on for given galaxies. To make the

decision, we use photometric redshift (photoz). As we noted before, the uncertainty

of photoz is about 0.02 ∼ 0.03, which is quite large for selecting cluster members, but

will suffice to determine which ridgeline color should be used for each galaxy. At the

border regions, the two adjacent ridgeline colors can yield similar results. Therefore,

we can determine the ridgeline color based on photoz of the galaxy. This requires

that we need to get the photoz for every galaxy beforehand using other methods.

A second complication of cluster finding across a wide redshift range arises from

the increased chance of overlapping clusters, one at low redshift and another at rela-

tively high redshift. Such an overlap will complicate the distribution in color space,

turning it from bimodal to tri-modal or even more. To reduce such possibilities, we

use a broad photoz window (such as ± 0.25 in photoz) to clip on the target galaxy/-
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Figure 3.1. The top two and bottom left panels are the color evolution based on a color model of
the red sequence galaxies (Koester et al., 2007a). The bottom right panel is the I band apparent
magnitude corresponding to 0.4L∗ at different redshifts.

cluster. The available photoz precision is adequate for this purpose too. In addition

to photoz clips, we also apply magnitude cuts and require the galaxies brighter than

0.4 L∗, where L∗ is the characteristic magnitude in the Schechter Luminosity func-

tion. For our application, the 0.4L∗ as a function of redshift is shown in the lower

right panel of Figure 3.1, which is adopted from (Koester et al., 2007a). These two

measures can do very well for removing the foreground and background clusters and

thus simplify the color space structure around the target galaxies.

The third complication concerns richness measurement of the clusters when the

ridgeline color is changed. The red sequence galaxies selected from different color band

have different degrees of contamination from the background. This is the fundamental
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limit of all color based red sequence selection. This has a relatively minor effect on

our cluster detection. As long as we have the cluster catalog available, we will need to

further calibrate the richness measured from different color bands using other means,

such as gravitational lensing.

The last but not least complication is the increase of measurement error as redshift

increase. Generally, measurement errors depend on the brightness of the galaxy.

As redshift increases, the fraction of faint galaxies increases and so do the average

measurement errors. As a result, our cluster detection will inevitably be redshift

dependent. As we will show in what follows, our detection likelihood function will

reflect this tendency. In the following subsections, we will show how to quantify the

likelihood functions to be used in cluster detection.

3.2 Brightest Cluster Galaxy as Cluster Centers

In our algorithm, the center of the cluster is assumed to be the Brightest Cluster

Galaxy (BCG). This is a very useful and reasonable assumption, with good physics,

algorithmic and computational motivations. The major physics motivation for fo-

cusing on the BCG as a cluster center is that the gas in a cluster is dragged to the

bottom of the gravitational potential well, making the central galaxy a lot brighter.

The BCG is widely thought to be co-located with the most bound particles typically

identified with the cluster center in simulation. Therefore, this is a pretty fair as-

sumption. The assumption is also very useful algorithmically. The BCG can serve

as a “noise damper” during the cluster finding process. Without the BCG assump-

tion, the projected galaxy density field would be very sensitive to foreground and

background galaxies, which we cannot remove completely by color cuts. A few incor-

rectly de-projected galaxies can severely affect the projected density centers in the

RA/DEC plane and therefore affect cluster detection. For all these reasons, searching

for a BCG as the center can boost the efficiency of cluster detection.
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3.3 E/S0 Ridgeline Selection

As a first step, we show how to determine the appropriate ridgeline color (g−r, r− i,

etc) for a given candidate BCG. Suppose we have photometric redshifts for every

galaxy, denoted as zp with an uncertainty denoted by σp. The true but unknown

redshift of the galaxy is denoted by z (unknown). If we assume the zp errors are

normally distributed (Abazajian & Sloan Digital Sky Survey, 2008), we can write

down the probability that the true redshift is within the redshift range zmin and zmax

as:

P (zmin ≤ z ≤ zmax) =
1

√

2πσ2
p

∫ zmax

zmin

dz exp

[

− (z − zp)
2

2σ2
p

]

(3.1)

The advantage of making a cut in probability space is that it allows us to take

uncertainties into account. One can put a threshold probability requirement for

galaxies being selected as a given ridgeline. As a result, some galaxies will not be

assigned to any ridgeline if they have very big uncertainties. If you take the philosophy

that a galaxy should belong to either ridgeline color, then it will be the same as a

direct cut on photoz. For Sloan filter system, the ridgeline and corresponding redshift

range is specified in Table.3.1.

3.4 BCG Candidates Pre-selection

In principle, every galaxy is a potential BCG and should be tested. However, this will

be computationally expensive and noise prone. Since we roughly know what a BCG

should look like in terms of its color and redshift, we do a very coarse pre-screening to

remove galaxies that are obvious not BCGs from our search lists. No doubt, there is a

risk of removing some true BCGs, but we can reduce the chance of this by imposing a

very broad cuts. To implement this pre-selection, for a given test galaxy, we introduce

the following BCG color likelihood, which quantifies the closeness of a given galaxy’s

color to the predicted ridgeline color at its redshift.

Based on the color model derived from the SDSS red galaxies with passive evo-

lution to high redshift(Koester et al., 2007a), we can get a simple relation between
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ridgeline color and redshift. We denote the model predicted ridgeline color at a given

the redshift z as c̄(z). The c̄(z) is shown in Figure 3.1. Then, the likelihood that a

given galaxy with known zp and color c in the corresponding ridgeline is given by

LBCG
candidate =

1

2πσp

√

σ2
c + w2

c

×
∫ ∞

−∞
dz exp

[

− (z − zp)
2

2σ2
p

− (c − c̄(z))2

2(σ2
c + w2

c )

]

(3.2)

where σc is the measurement uncertainty of the galaxy’s corresponding color and wc

is the corresponding ridgeline width at that color. We then impose a threshold on

this likelihood to throw away non-BCGs. To avoid excluding potential real BCGs, we

keep the threshold very low, i.e. 0.1. However, there is still danger for false rejection

of potential BCGs due to some very incorrect photozs. To make our cut insensitive

to the photozs, we do not impose the cut directly on the likelihood Eq.3.2. Instead,

we select potential BCGs based on this likelihood, examining their distributions in

color-color space, and make cuts in color space. When we apply cuts in color space,

we make our cuts a lot bigger to cover the region where our selected BCGs reside.

By such a scheme, we can avoid removing those potential BCGs with catastrophic

photozs.

3.5 Red Sequence Member Galaxy Selection

The sizes of clusters are varied. Therefore, using a variable aperture size to measure

the properties of clusters is desirable. For a candidate cluster, we should try a series

of different aperture radii, and select the one that gives best S/N. However, this

can be computationally expensive. As a substitute, we take a two-step approach to

achieve the above purpose. First, we measure the richness of the cluster by using a

fixed aperture size. Second, we scale the radius based on our measured fixed aperture

richness and remeasure everything using the scaled aperture size. The key part of

this procedure is we need to have appropriate scaling relations so as to improve the

Signal/Noise. In the following, we will show how we implement this.
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3.5.1 Fixed Aperture Membership and Richness

For a candidate BCG, we identify cluster members in the following way. We draw

a 0.5 Mpc circle around the candidate BCG and get all the galaxies fainter than it

but brighter than the 0.4L* magnitude at the candidate BCG’s redshift. Since we

already know which color ridgeline we should use for this candidate BCG, we use

a two-component Gaussian mixture to fit the distribution of the colors of all the

galaxies selected above (See Chapter 2). To remove possible overlap of two or more

clusters along the line of sight, we apply a photoz clip to consider only galaxies within

a photoz difference of ±0.25. The precision of photoz is adequate for this purpose.

Also, a Bayesian Information Criterion (BIC) is introduced to determine how many

Gaussian components are appropriate (Hao et al., 2009).

To determine which Gaussian component the candidate BCG belongs to, we com-

pare its corresponding likelihoods of belonging to each of the two Gaussian compo-

nents (one corresponds to the color distribution of red sequence galaxies and another

corresponds to the color distribution of the field and blue galaxies) and select the most

likely Gaussian component as the candidate BCG’s red sequence galaxy distribution.

Its mean will correspond to the location of the ridgeline and its standard deviation

will be the width of the ridgeline. All the galaxies whose colors are within ±2σ of the

ridgeline location will be tagged as members. The number of member galaxies is de-

noted as N0.5Mpc
gals . The reason we apply the cut ±2σ is that this is normally the place

where the background likelihood dominates over cluster likelihood. The justification

of doing this is that the member galaxies of the cluster should also cluster in color

space. The two component Gaussian Mixture Model can reliably pick up the right

peak in the color space as verified by our Monte Carlo simulation test (Hao et al.,

2009).
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Figure 3.2. Comparing different scaling relations. The number in each box is the σln LX
defined

in (Rykoff et al., 2008; Rozo et al., 2008b). Based on the result, we choose N = 0.5 and P = 0.1.

3.5.2 Scaled Aperture Size and Richness

For selecting the appropriate aperture, we assume the scaling relation to be a power

law, as motivated by Hansen et al. (2007).

Rscale = N(N0.5Mpc
gals )P (3.3)

where N and P are the normalization and power respectively. The crucial part is that

we need to fix N and P in some way so that the resulting Rscale is best for the cluster

in terms of S/N. The criteria we used here is the scatter in ln LX at fixed richness

estimated in a similar way for the maxBCG clusters (Rykoff et al., 2008; Rozo et al.,

2008b). The smaller the scatter, the better the estimated richness and therefore the

better the aperture. The performance of a grid N,P is shown in Figure 3.2. The best

scaling relation is at N = 0.5 and P = 0.1, which yield σln LX
= 0.86 ± 0.02 for the

top 2000 clusters. Compared with σln LX |N200
= 0.96± 0.03 based on maxBCG scaled

richness N200, the current scaling is a big improvement.

Once we have the scaled aperture, we repeat the procedures for the fixed aper-

tures, substituting the corresponding scaled aperture for 0.5 Mpc. The corresponding

richness is denoted as N scaled
gal .
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3.6 Cluster Likelihood

Next we need to quantify how “likely” a galaxy is to be a BCG and measure its

strength of clustering. We introduce two likelihoods to quantify these. It is worth

noting that they are called likelihoods because they quantify the uncertainty and

are normalized to unity. Mathematically, such a measure is equivalent to likelihood.

They are not likelihoods from the frequentist’s view and do not correspond to any

underlying random process. The first likelihood is based on how close a candidate

BCG’s color is to the corresponding ridgeline color selected as described in 3.5.2. We

introduce the following cluster BCG likelihood to quantify this.

LBCG
cluster =

1
√

2π(σ2
gm + σ2

c )
exp

[

− (c − cgm)2

2(σ2
gm + σ2

c )

]

(3.4)

where σgm is the width of the Gaussian component corresponding to the cluster, and

cgm is the cluster’s ridgeline color from the Gaussian component’s peak location. c

is the color of the candidate BCG and σc is the corresponding measurement error.

We also require |c − cgm| ≤ 2
√

σ2
gm + σ2

c for the candidate BCG to be considered as

a BCG.

We quantify the strength of clustering in the projected ra/dec plane by convolv-

ing the selected members with a radial kernel/profile. This is essentially a radially

weighed number count of the members. Here, we choose the projected NFW pro-

file (Bartelmann, 1996; Navarro et al., 1997; Koester et al., 2007b) as the radial

kernel. It is worth noting that the type of kernel used is not as important as its scale,

which has been revealed by statistical kernel density analyses (Silverman, 1986; Scott,

1992). Therefore, the specific kernel we use won’t significantly bias the detection of

clusters that deviate from the kernel shape. In this work, we will stick to the NFW

radial kernel. We introduce the clustering strength likelihood as

Lstrength
cluster =

Ng
∑

k=1

Σ(xk) (3.5)
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where Ng is the total number of member galaxies and

Σ(x) =
2ρsrs

x2 − 1
f(x), (3.6)

rs = r200/c is the the scale radius, ρs is the projected critical density, x = r/rs and

f(x) =



















































1 − 2√
x2−1

tan−1
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x−1
x+1

x > 1

1 − 2√
1−x2
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x < 1

0 x = 1

0 x > 20.

(3.7)

The profile is truncated at r = 100h−1 kpc to avoid divergence of f(x) and we choose

rs = 150 kpc in our implementation. For details, refer to (Koester et al., 2007b).

Now, we have two likelihoods; the cluster BCG likelihood LBCG
cluster Eq.(3.4) and

clustering strength likelihood Lstrength
cluster Eq.(3.5), which capture the color and spatial

information of a cluster respectively. Now, we combine them together as a measure

of how strong the clustering is and how likely the galaxy is a BCG.

Ltot
cluster = LBCG

cluster × Lstrength
cluster (3.8)

This likelihood is essentially a measure of the convolved density map modulated

by the closeness of candidate BCG’s color to the ridgeline color. We will use it as our

major criterion for selecting clusters.

3.6.1 Luminosity Weighted Radial Density Likelihood

In addition to the likelihood we introduced in the previous section, we also measured

another likelihood, the luminosity weighted radial likelihood Lstrength
Lum . This likelihood

is measured in a similar way as Lstrength
cluster except we attach a luminosity weight (Wlum)

to each galaxy. The luminosity weight is determined by the ratio of each galaxy’s

i-band magnitude to the i-band magnitude corresponding to 0.4L* at the candidate

cluster BCG’s redshift.
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Lstrength
Lum =

Ng
∑

k=1

Σ(xk) × Wlum(k) (3.9)

The advantage of introducing such a measure is that its ratio to the non-luminosity

weighted Lstrength
cluster is a good indicator of whether the candidate BCG is a star or a

galaxy. It is a double check for the star/galaxy separation of the input catalog.

3.6.2 Implementation of the Algorithm

With all the quantities calculated from the above definitions, the implementation of

the cluster selection is straightforward. There are basically four steps:

1. Preselecting BCG candidates.

2. For every galaxy in the candidate list, evaluate the total likelihood Ltot
cluster.

During this process, the member galaxies are searched in the full galaxy catalog,

not the candidate list.

3. Rank the candidate BCGs by total likelihood and remove those candidates from

this list which are identified as members of another candidate BCG with higher

total likelihood. In Figure 3.4, we show the distribution of likelihoods around

a cluster. The BCGs with lower likelihood will be merged with the one with

highest likelihood.

4. Repeat the above process and eventually obtain a list of BCGs and their cluster

members. Based on the richness measured in 0.5 Mpc, we calculate a scaling

Rscaled for every BCG. Then, repeat process 1) – 2) by changing the searching

aperture to Rscaled from 0.5 Mpc. We then arrive at a final list of BCG members

and BCGs with scaled richness N scale
gals .

The procedures are summarized as a flowchart in Figure 3.3

3.6.3 Post Percolation Procedure

The above process is essentially a process of detecting the peaks of the smoothed

density field with the height of the peaks measured by Ltot
cluster. This quantity is a

57



Figure 3.3. Flowchart for the implementation of the GMBCG algorithm
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Figure 3.4. Upper panel shows candidate BCGs with lower likelihood will be merged into the
cluster whose BCG has higher likelihood. Lower panel show the actual cluster (Abell 1689). The
highest peak in the upper panel correspond to the brightest galaxy in the field.
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combination of the peak height of density field Lstrength
cluster and LBCG

cluster which quantifies

the closeness of the BCG’s color to the corresponding ridgeline color. From the

Ltot
cluster, we can get two pieces of information: how likely the target galaxy is a

Brightest Cluster Galaxy and how strongly the galaxies are clustered around it. These

two are not completely independent.

In our cluster finding process, the center of the cluster is assumed to be the

brightest cluster galaxy. Therefore, it is possible that several peaks (quantified by

Ltot
cluster) are identified in the field of a brightest cluster galaxy. We then need to blend

several peaks and merge them into the same clusters using some criteria. We call

this process post percolation. The major motivation for not directly blending the

peaks during the cluster finding process is that we want to have some flexibility on

how to merge the peaks. In many cases, the sub-peaks are indicators of potential

sub-structures of clusters.

To be specific, we merge the peaks in the following way. For an identified peak (on

a potential BCG), we identify a cylindrical region in the ra/dec plane and redshift

space. The radius of the cylinder is specified by the radius of the cluster and the

height is specified by its photoz ±0.05. If another fainter candidate BCG falls within

this cylinder, that fainter BCG peak will be merged into the brighter BCG peak in

a similar way as shown in Figure 3.4, but with likelihood replaced by the I band

magnitude. This is only one way to do the percolation, and may not be the optimal

one. In reality, one needs to test this against some known clusters and see if the

percolation scheme is over/under blending (Koester et al., 2007a).

3.7 Comparison with MaxBCG Algorithm

It is interesting to collect the major differences between the GMBCG and maxBCG

algorithms (Koester et al., 2007b). maxBCG is a matched filter based algorithm

with an additional filter from the red sequence colors. Using this algorithm, a large

optical cluster catalog has been created (Koester et al., 2007a), which has high purity

and completeness base on tests on both a Monte Carlo catalog and a N-body mock

catalog.
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The difference between GMBCG and maxBCG can be summarized as three major

aspects:

1. Generally speaking, maxBCG is a generalized matched filter algorithm with

the inclusion of a color filter in addition to radial and magnitude filters. It

varies the filter at a grid of testing redshifts. The redshift at which the model

filter maximizes the match with data is selected as the redshift of the cluster.

GMBCG is not a matched filter like algorithm and it does not maximize the

match for any filter. It uses a statistically well motivated mixture model to

identify red sequence galaxies. The radial NFW kernel serves as a smoothing

kernel rather than a model filter. Therefore, GMBCG will not bias against

clusters that do not follow the assumed model filter.

2. maxBCG assumes a ridgeline model and fixed background for all clusters while

GMBCG does not assume any model priori. It uses the well established mixture

model to determine the ridgeline and background cluster by cluster. The ad-

vantage is that it automatically adjusts the cluster and background parameters

across a wide redshift range.

3. In the maxBCG algorithm, the photozs of the clusters are estimated as a part

of the execution of the algorithm. But in GMBCG, photozs are obtained from

other methods such as neural networks, nearest neighbor polynomial, etc.

From the above comparisons, it should be clear that GMBCG is more easily

extended to high redshift and less biased against atypical clusters.
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CHAPTER 4

GMBCG Catalog For SDSS DR7

In this chapter, we apply the GMBCG algorithm to the latest data release of the

Sloan Digital Sky Survey (data release 7, DR7 hereafter), and construct an optical

cluster catalog of more than 53,000 rich clusters across the redshift range 0.1 ∼ 0.5.

We also identify some especially rich high redshift clusters beyond redshift 0.5. We

cross match the GMBCG clusters to X-ray clusters and maxBCG clusters, and test

the completeness and purity of the catalog against a Monte Carlo catalog based on

the DR7 data. In the following, I will introduce the details of how such a large catalog

was assembled using the GMBCG algorithm.

4.1 SDSS DR7 Data

The Sloan Digital Sky Survey (SDSS) (York et al., 2000) is a multi-color digitized

CCD imaging and spectroscopic sky survey, utilizing a dedicated 2.5-meter telescope

at Apache Point Observatory, New Mexico. It has recently completed mapping over

one quarter of the whole sky up to the medium redshift range in ugriz filters. DR7 is

a mark of the completion of the original goals of the SDSS and the end of the phase

known as SDSS-II (Abazajian & Sloan Digital Sky Survey, 2008). It includes a total

imaging area of 11663 square degrees with 357 million unique objects identified.

In this paper, we will mainly detect clusters on the so called Legacy Survey area,

which “provided a uniform, well-calibrated map in ugriz of more than 7,500 square

degrees of the North Galactic Cap, and three stripes in the South Galactic Cap total-

ing 740 square degrees” (Abazajian & Sloan Digital Sky Survey, 2008). In Figure 4.1

we show the coverage map.
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Figure 4.1. The photometric imaging coverage of the SDSS legacy survey. The figure is from the
SDSS official website (www.sdss.org).

After running our GMBCG algorithm on the data, we assembled a large and ap-

proximately volume-limited cluster catalog with more than 53,000 clusters above a

certain richness threshold and across a redshift range from 0.1 to 0.5 (main cata-

log). In addition, we identified some big clusters at redshifts above 0.5 (high redshift

catalog), which are almost at the detection limit of SDSS data.

4.2 Input Catalog

To prepare an input galaxy catalog, we download the galaxy catalog from the Photo-

Primary view with type set to 3 (galaxy) and i-band magnitude less than 21.0 from

the Casjob database (http://casjobs.sdss.org/CasJobs/). Meanwhile, we also down-

load the photoz table and cross match the objects to the galaxy catalog to attach

photozs to each galaxy. In DR7, the photozs in the photoz table are calculated based

on a nearest neighbor polynomial algorithm (Abazajian & Sloan Digital Sky Survey,

2008). Since we cross matched the photoz table to get photozs, the selection criteria

used in the photoz table are also applied to our final input catalog.

In addition to the above selection requirements, we also throw away those galaxies
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Figure 4.2. The BCG preselection in color - color space for the SDSS DR7 data. The gray parts
are our preselected BCGs in color-color space.

with very bad measurements (photometric errors greater than 20 percent). We then

made some cuts in color-color space to select the search list for candidate BCGs as

described in section 3.4. The corresponding cuts in color-color space are shown in

Figure 4.2. We apply very tolerant cuts which keep 70% of the total galaxies in our

candidate BCG search list, eliminating only those with quite atypical colors.

After the above procedures, we prepare an input catalog for our cluster finder. It

is worth noting that we did not apply any star/galaxy separation procedures other

than the ones generated by the standard DR7 pipeline. This is a relatively tolerant

selection that may be contaminated by occasional bright stars that are not well sepa-

rated from galaxies. However, as we will show in what follows, we measured another

quantity, “weighted nfw lh”. By comparing this with the standard “nfw lh” we can

reliably eliminate any bright stars which make it into in our resulting catalog.
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Tag Name in Catalog Definition
OBJID Unique ID of each galaxy in SDSS DR7
RA Right Ascention
DEC Declination
PHOTOZ Photometric redshift from the photoz table in DR7
PHOTOZ ERR Errors of photoz
SPZ Spectroscopic redshift
GMR g − r colora

GMR ERR Error of g − r color
RMI r − i color
RMI ERR Error of r − i color
MODEL COUNTS Model magnitudeb

MODEL COUNTS ERR Error of model magnitude
LIM I I band magnitude corresponding 0.4L∗ at photoz
BCGLH Cluster BCG likelihood, LBCG

cluster

NFW LH Clustering strength likelihood, Lstrength

cluster

WEIGHTED NFW LH Luminosity weighted radial density likelihood, Lstrength

Lum
LH Total cluster likelihood, Ltot

cluster
NGALS Number of member galaxies inside 0.5 Mpc circle from BCG
GM SCALEDR The scaled aperture Rscale

GM SCALED NGALS Number of member galaxies inside GM SCALEDR from BCG
GM GMR Location of the Gaussian component corresponding to cluster red sequence in g − r color
GM GMR WDH Width of the Gaussian component corresponding to cluster red sequence in g − r color
GM RMI Location of the Gaussian component corresponding to cluster red sequence in r − i color
GM RMI WDH Width of the Gaussian component corresponding to cluster red sequence in r − i color
GM NN Number of Gaussian Mixtures
GM SCALED NGALS UNIF Rescaled richness, see section 4.3.2
NFW LH UNIF Rescaled NFW LH, see section 4.3.2

Table 4.1. The tags in the cluster catalog

aAll colors are calculated using model magnitude

bFor details, see http://www.sdss.org/DR7/algorithms/photometry.html

4.3 Cluster Catalog

4.3.1 Catalog Facts

We apply the GMBCG algorithm to the input catalog and generate a full catalog of

galaxy clusters for the SDSS DR7. We search clusters from redshift 0.05 to 0.60, but

only include in the main final catalog the redshift range 0.1 ∼ 0.5 to keep the quality

of the catalog high. In Table 4.3.1, we list the tags in the final cluster catalog and their

corresponding definitions. There are about 53,000 clusters with the rescaled Lstrength
cluster

(see next section) greater than 8.5 after applying the post percolation procedure.

The redshift distribution of the clusters are shown in Figure 4.3 and the richness

distribution is shown in Figure 4.4. Example clusters at different redshift are shown

in Fig. 4.3.1.

65



Figure 4.3. Redshift distribution of GMBCG clusters with rescaled NFW LH greater or equal to
8.5
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Figure 4.4. Richness distribution of GMBCG clusters. The richness is a rescaled richness (see next
section).
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Figure 4.5. The above images are some of our detected clusters from SDSS DR7. The green letters
on the images indicate the BCGs’ spectroscopic redshift.
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4.3.2 Richness Re-scaling

In the redshift range 0.1 ∼ 0.5, only the g − r and r − i ridgeline colors are used,

and the switch between them is determined by the photoz of the target galaxy. Since

we measure the richness by counting the number of galaxies falling within 2σ of the

ridgeline, the resulting richness from g − r and r − i are not directly comparable. In

part this is due to a changing degree of background contamination as the ridgeline

moves through color space (see Figure 4.8). Generally, the richness measured from

r − i is higher than that measured from g − r. To make the richness more consistent

across the whole redshift range, we rescale the richness measured from r − i color.

Clearly, mass is the only true parameter with which we should relate the two different

richnesses. Therefore, a complete resolution of this problem requires to map out the

mass-richness relation for both richnesses and then bring them to the same ground.

However, for the moment, we will use a simple first order approach. That is, we

require the statistical distribution of richness measured from two different colors to

be the same. The scaling relation that matches the two distributions is clearly non-

linear. The procedure we use is to match the richness at different percentile bins of the

two distributions and re-scale them linearly in each bin. Then, we fit a polynomial

to the scaling relation across all the bins and get a “continuous” scaling relation.

The richness from r − i color will be re-scaled by this continuous scaling relation

and the results are shown in Figure 4.6 and Figure 4.7. Since the scaling relation is

monotonously increasing, the scaled richness will not alter the cluster ranking based

on the original richness in the r − i ridgeline region.

4.3.3 Bimodality in Color Space

As we have shown in previous sections, the color distribution around a cluster nor-

mally shows bimodality. But there are situations where the cluster is so big that

its members completely dominate the field within the aperture we impose. In this

case, the color distribution may be unimodal. In our implementation of the GMBCG

algorithm, we also consider this situation as a potential cluster as long as the width

of the dominant unimodal distribution is narrow enough.
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Figure 4.6. The re-scaling of the richness and nfw lh measured based on g − r color (histogram
with filled line at 45◦) and r− i color (histogram with filled line at −45◦). Corresponding nonlinear
re-scaling relations are multiplied to the richness and nfw lh based on r − i color. This procedure
roughly matches the two distribution.
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Figure 4.7. The scatter plot of photoz vs. richness and nfw lh before and after re-scaling. Clearly,
after re-scaling, the bump around 0.35 due to the change of ridgeline become significantly damped.
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In the case of a bimodal color distribution, the separation between the two Gaus-

sian components will vary as redshift changes, leading to different degrees of overlap.

This overlap of the two Gaussian components partially tells us the fraction of pro-

jected galaxies when we impose the color cuts on the red sequence galaxies. Therefore,

the richness for the clusters should be appropriately weighted to account for the pro-

jection. In Figure 4.8, we show the color distribution of clusters at different redshifts.

From the plot, the 2σ cut we imposed for selecting red sequence members is almost

where the likelihood of red sequence galaxy becomes equal to that of background/blue

galaxies, which substantiates our previous choice.

4.4 Evaluating the Catalog

Any cluster finding algorithm can be evaluated by two simple criteria: completeness

and purity. Completeness quantifies whether the cluster finder can find all true clus-

ters, while purity quantifies whether the clusters found by the cluster finder are real

clusters. However, calculating the completeness and purity requires that we know

in advance what is a true cluster. This issue can only be completely resolved when

we have a high resolution simulation catalog that can properly reflect the galaxies’

colors as well as their interaction with dark matter halos. However, this is a very

difficult task, complicated by various factors such as limitations of the resolution of

simulation, unknown behaviors of galaxies at high redshift, unknown evolution of all

types of galaxies and distribution, etc.

In this section, we introduced a simple and robust Monte Carlo Mock Catalog to

test our cluster finder. The result can, at least, tell us the purity and completeness

of our cluster catalog with respect to the model clusters we put in.

4.4.1 Monte Carlo Mock Catalog

There are four steps to create the Monte Carlo catalog:

1. The base catalog preparation: we pull out 25 stripes of galaxy catalog (about

70%) from DR7 of the Sloan Digital Sky Survey and remove all the known

cluster galaxies based on our cluster catalog. We shuffle the remaining galaxies
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Figure 4.8. The bimodal distribution of red sequence galaxy colors and background/blue galaxies.
The results are based on the average results in each redshift bin as indicated in the plots. The green
vertical lines are the 2 σ clip of the red sequence peak.
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by using random ra and dec to replace their true ra and dec, while keeping their

colors and other properties unchanged.

2. Model cluster selection: We pick up 51 big clusters whose redshift ranges from

0.1 to 0.5 from our cluster catalog and confirm them by visually checking their

SDSS images. These clusters are very big and we are quite sure they are real

clusters. Each cluster has a BCG and about 30-100 member galaxies.

3. Model mock clusters resampling : Pick up a BCG randomly from the 51 model

clusters and then select a fixed number of member galaxies from the correspond-

ing model cluster’s members. The fixed number is randomly chosen from [10,

15, 20, 25, 30, 35, 40, 45, 50]. In this way, we can generate a resampled model

cluster of a given richness.

4. Putting resampled model clusters into base catalog: For every stripe of the base

catalog, we select 500 resampled model clusters and put them into the base

catalog so that their corresponding BCGs replace 500 randomly chosen galaxies

in the base catalog. Then, we will have a Monte Carlo catalog that are based

on the real photometry of the SDSS DR7 data.

The above procedures are summarized in the flowchart in Figure 4.9. Through this

procedure, we can produce very realistic mock clusters in a realistic setting. However,

since we sample from the big clusters to generate small clusters, the brightness of the

smaller clusters we generated might be biased and appear brighter than they should

be. Will this affect our results a lot? The answer is no. Because we assume the BCG

as cluster center and as long as this property is reserved in the mock clusters, we will

be safe. The increased brightness of the smaller mock clusters will only affect the

S/N of the color of each galaxy and this will not have a big impact since we have

already modeled the measurement errors using the Error Corrected Gaussian Mixture

Model. So, this artifact in the mock catalog will not affect our objective of testing

the completeness and purity of our GMBCG catalog.
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Figure 4.9. The flowchart of generating the mock catalog

Another unrealistic artifact is that we randomize the field galaxies. In the real

world, their distribution is not so random. However, their correlation is very weak

compared to the correlation around clusters. Therefore, treating it as a Poisson

random distribution should not have a big impact on our cluster detection, but will

affect the richness estimate. In this section, we only consider if we can detect the

clusters we put there and not the richness correlation. So, for this purpose, the Monte

Carlo catalog should suffice.

4.4.2 Completeness and Purity

To test the completeness and purity of our cluster finder, we run it on the Monte Carlo

catalog created above. Then, we cross match the detected clusters and the model

clusters using a simple cylinder matching, i.e. searching in a cylinder of 0.5 Mpc

in radius and ±0.02 in redshift (this is a very small cylinder). At a given redshift

bin and above a given Ngal, if we denote the number of model clusters that are

matched to the found clusters by Nmatch
model (z,Ngal), the total number of model clusters

by Nmodel(z,Ngal), the number of found clusters that are matched to model clusters

by Nmatch
found (z,N scaled

gal ) and the total number of found clusters by Nfound(z,N
scaled
gal ), the
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Figure 4.10. The completeness and purity of the GMBCG catalog based on the Monte Carlo
Catalog. In the completeness plot, Ngal is the number of member galaxies of our input model
clusters. In the purity plot, Nscaled

gal is the number of member galaxies measured by the cluster
finder. Since there are residual red galaxies in the catalog before we put clusters in, the measured
cluster richness (Nscaled

gal ) is generally higher than our input richness

completeness and purity can then be defined as

completeness =
Nmatch

model (z,Ngal)

Nmodel(z,Ngal)
(4.1)

purity =
Nmatch

found (z,N scaled
gal )

Nfound(z,N scaled
gal )

(4.2)

The results of the completeness and purity are plotted in Figure 4.10. The plot

show that the GMBCG algorithm can yield a highly complete and pure cluster cat-

alog.

4.5 Cross-Matching of GMBCG to ROSAT X-ray Clusters

Optical identification of peaks in the galaxy distribution represents only one of many

methods used to find clusters. Other observables employed in cluster detection include

thermal emission of x-rays from the hot intracluster medium, weak-lensing distortion

of background sources, and the Sunyaev-Zeldovich effect on the cosmic microwave

background. Each method has certain advantages and disadvantages along with a

unique proxy for the mass of a cluster, which can be used to probe cosmological
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constraints. Therefore, it is important that our cluster finding algorithm be able to

detect those clusters found by alternative means. X-ray cluster catalogs are the most

appealing candidate for exploring this question. Numerous x-ray catalogs exist with

large sky coverage overlapping the DR7 survey area. Follow up optical examination

is frequently performed on these catalogs to confirm their identity as clusters and to

obtain accurate redshifts.

Just as when matching to optically identified catalogs, complications do arise. It

is not always the case that the BCG lies exactly on the X-ray peak. There exists

significant scatter in the x-ray luminosity-richness relation (Rykoff et al., 2008). Fur-

thermore, the DR7 catalog contains clusters down to a richness threshold much lower

then current x-ray catalogs can detect. The main goal of this exercise is to test the

extent to which our algorithm is able to identify the brightest x-ray clusters.

We compare the DR7 catalog to three x-ray identified cluster catalogs: NORAS

(Böhringer et al., 2000), REFLEX (Böhringer et al., 2004) and 400 deg2 (Burenin

et al., 2007). NORAS and REFLEX are composed of clusters identified from extended

sources on the ROSAT all-sky survey x-ray maps. Together they cover the northern

and southern galactic caps and are flux limited at 3 × 10−12 ergs s−1cm−2 in the 0.1

- 2.4 KeV energy band. The 400 deg2 catalog is composed of serendipitous clusters

found in the high galactic latitude ROSAT pointings. It is flux limited at 1.4 s−1cm−2

in the 0.5 - 2.0 KeV energy band. Sources from all three catalogs have been confirmed

as clusters through follow up optical identification. Combining these catalogs yields

229 unique clusters in the survey area spanned by DR7.

A cylindrical search is performed on the combined x-ray catalogs in order to

determine if these clusters were found by the GMBCG algorithm. We consider two

clusters a match if they have a physical separation in the projected plane sep < 2.0

Mpc and a redshift difference |zxray − zphoto| < 0.05. By this criteria, 222 out of

229 X-ray clusters are matched with at least one GMBCG cluster. As pointed out

in Koester et al. (2007a), when the matching separation is greater than 1 Mpc, the

matches are often chance matchs. Therefore, only matches at separations less than 0.5

Mpc are reliable matches. On the other hand, the GMBCG clusters are at different
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Figure 4.11. Contour of the matching ratio to ROSAT clusters for different separation and rich-
ness/nfw lh. The percentages are calculated by the ratio of the matched clusters with matching
separation less than the point on the contour while richness/nfw lh greater than the point on the
contour.

confidence levels if they have different N scaled
gal or clustering strength (Lstrength

cluster ). So,

the general notion is that the bigger the cluster and the shorter the separation, the

higher probability of a true match. The rule of thumb for good clusters is N scaled
gal ≥ 10

or (Lstrength
cluster ≥ 6. In Figure 4.11 we show the contour plots of the matching ratio in

terms of separation and cluster richness/clustering strength. The results show that

we can reliably recover 90% of the X-ray clusters (separation is less than 0.5 Mpc

and richness is greater than 10.)

In Figure 4.12, we show two high Lx ROSAT clusters with and without optical

clusters matched. The one without a match is clearly not a cluster. The other non-

matched ROSAT clusters are in similar situation, i.e. they are likely to be incorrectly

identified as as X-ray clusters. In Figure 4.13, we listed 6 such clusters.

4.6 Cross-Matching to MaxBCG Clusters

As a further test on the completeness of the GMBCG Catalog, we make a comparison

to the maxBCG catalog (Koester et al., 2007a). The maxBCG catalog consists of

13,827 clusters in the redshift range 0.1 < z < 0.3 with a lower threshold on richness
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Figure 4.12. The left panel shows a high LX ROSAT that has an optical cluster match. The right
panel show another high LX ROSAT that does not have an optical cluster match

set at N200 = 10. It is derived from DR5 of the Sloan Digital Sky Survey and covers

a slightly smaller area than the new GMBCG catalog.

Several complications arise in the process of performing cluster-to-cluster matches

between catalogs, namely redshift uncertainties, centering differences between the two

algorithms, and scatter in the richness measurements. Although many similarities

exist between the maxBCG and GMBCG algorithms, it is not always the case that

they choose the same central galaxy for a given cluster. When matching clusters a

careful cut must then be made in the two-dimensional physical separation in order to

allow for this centering difference, while at the same time minimizing unreal matches

due to random projection. Uncertainty in the photometric redshifts can yield a similar

problem along the line of sight because a cut in ∆z = |zmaxBCG − zGMBCG| must be

made that accommodates these errors. Finally, the richness measurements themselves

have large scatter, i.e. clusters that appear in one catalog may be given a richness

value below threshold in the other and be unavailable for match. In what follows we

briefly examine each of these problems in considering the best matching scheme to

implement in order to quantify the agreement between the GMBCG catalog and the

maxBCG catalog.
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Figure 4.13. Six ROSAT clusters that do not have any matched optical clusters.
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Figure 4.14. Left panel is the contour of matching fraction of the maxBCG clusters to the GMBCG
clusters at different richness (Ngals R200) and different separations. In the right panel, random
points are used instead of the GMBCG clusters.

The uncertainty in redshift estimates for maxBCG clusters is σz ∼ 0.015 (Koester

et al., 2007a). In the GMBCG catalog, the uncertainty of the photozs at redshift be-

low 0.3 is ∼ 0.02 (Abazajian & Sloan Digital Sky Survey, 2008). Therefore, a redshift

difference of ∼ 0.05 between the two catalogs is an appropriate selection window for

the matching. As for the radial separation, given the fact that the maxBCG clusters

are blended within a separation of R200 ∼ 1.0 − 2.0 Mpc (Koester et al., 2007b),

a radial separation of ∼ 2.0 Mpc is appropriate for our matching search. Similar

as matching to X-ray clusters, the smaller the matching separation, the higher the

probability of real matches. But it is a little more complicated in the current case

because the lower the richness of the maxBCG clusters, the less likely they are true

clusters (for the massive X-ray clusters, we are more certain they are real clusters).

Therefore, we make the following contour plots about the matching ratio with respect

to both the separation and the richness of maxBCG clusters.

Such a matching yields that 11,754 out of 13,823 (∼ 85%) clusters in maxBCG cat-

alog have a match in the blended GMBCG catalog where a threshold of Lstrength
cluster ≥ 5

is applied. If we loosen this threshold and take into account the intrinsic scatter in

the richness relations of the two catalogs, 13,789 out of 13,823 (∼ 99.8%) maxBCG
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clusters match to GMBCG clusters. Those non-matched clusters are all at low rich-

ness Moreover, 8,979 clusters of the 13,789 matched clusters (∼ 65.1%) have identical

BCGs identified from the GMBCG catalog. In the left panel of Figure 4.14, we show

the matching fraction of the GMBCG clusters to maxBCG clusters at different rich-

ness (maxBCG clusters) and separation. As a comparison, we make a similar plot by

matching random points to maxBCG clusters.
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CHAPTER 5

Statistical Methods and Precision Cosmology

“If your experiment needs statistics, you ought to have done a better

experiment.”

Lord Ernest Rutherford

One of the major goals in Science is to build models to describe large amounts

of observations/data with fewer parameters. The way we can verify if our model

is reasonable is to see if the model can reproduce the data in a statistically non-

distinguishable way. Therefore, precision cosmology requires not only precision mea-

surements, but also precision data analysis methods.

Astrophysics experiments are different from other laboratory experiments in that

we cannot get what we wish, we can only get what the Universe provides. In addition

to this disadvantage, we also suffer from the fact that most measurements are a

combination of intrinsic scatter and measurement errors, which are in general hard to

separate without some assumptions. Therefore, appropriate statistical methods are

especially important for astronomical data analysis. In this chapter, I am going to

describe some of my work related to statistical methods in data analysis. This works

is not yet systematic nor complete, but it nonetheless leads to some very interesting

applications.

5.1 Robust Fitting

The widely used scheme for fitting astronomical data is the maximum likelihood es-

timation (MLE) scheme, in which the “best” estimates of model parameters should

maximize the likelihood of the parameters given the data, i.e. L(θ|data). To get
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correct parameter estimates, one needs to correctly model the data and defines an

appropriate L(θ|data) to be maximized. In practice, most analyses assume Gaus-

sianity of the residual distribution and therefore take the likelihood L(θ|data) to be

Gaussian. Maximizing such a likelihood function is mathematically equivalent to the

well known least square estimation method (LSE, or weighted least square estimation,

WLSE). Despite its wide application, one must bear in his mind the disadvantage of

LSE – it is highly sensitive to outliers in the data. Statistically, the definition of an

outlier is tricky and model dependent. That is, if you fit the data with model A, then

the outliers may not be outliers if you fit the data with model B. In physics, models

have been generally fixed by physics considerations and what we are concerned with

is parameter estimation. Some outliers in data may alter the constraints on certain

parameters, which will lead to misinterpretation of the physics if the parameters are

in critical regions. There are two ways to get out of this trouble. First, scrutinize

the data carefully and remove the outliers. With luck, you can sucessfully remove

outliers instead of data points corresponding to interesting physics. Second, use more

robust and outlier insensitive methods to fit the data.

In this section, I will introduce a robust analysis based on SNIa distance modulus

and redshift data, though in principle the method is applicable to any other astro-

nomical data analysis without increase of computation if using the Markov Chain

Monte Carlo (MCMC) method. There are two major reasons for choosing SNIa data

for this analysis: the physics model for the Supernovae distance modulus and redshift

relation is straightforward and well understood and the SNIa data are delicate with

many uncertainties entering into the calibrations and seeding the potential of outliers.

Our main purpose in this section is not to lay down precise new constraints on

the cosmological parameters. Instead, we will focus on the demonstration of the

differences in parameter estimates from LSE and robust methods. Therefore, we do

not impose any prior on Hubble parameter from other experiments.

The sensitivity of the LSE method to outliers mainly stems from the fact that

its merit function is of second order in the residuals. To be specific, we demonstrate

this using the SNIa distance modulus ({µi}), redshift ({zi}) and measurement error
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Figure 5.1. Gaussian distribution (red) and two-sided exponential distribution (blue).

({σi})

χ2 =
∑

i

[

µi − µ(θ; zi)

σi

]2

(5.1)

where µ(θ; zi) is the distance modulus predicted from a given cosmological model

with cosmological parameters θ at redshift zi. This corresponds to a likelihood of

parameters given the data

L(θ|{zi}, {µi}, {σi}) =
∏

i

1
√

2πσ2
i

exp

[

− (µi − µ(θ; zi))
2

2σ2
i

]

(5.2)

Thus, a natural consideration of robust analysis that is less sensitive to outliers is to

consider the fist order of the residuals as the merit function (Press et al., 2002), i.e.

with the likelihood function

L(θ|{zi}, {µi}, {σi}) =
∏

i

1√
2πσi

exp

[

− |µi − µ(θ; zi)|
2σi

]

(5.3)

In Fig.(5.1), we show the two different types of distributions. When there are

outliers, the double side exponential distribution is a better representation of the

residual distribution and more robust.
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Comparing Eq.(5.2) and Eq.(5.3), one can observe that maximizing the latter by

methods involving derivatives (such as the popular Levenberg-Marquardt method)

will not be valid any longer due to the discontinuity of the derivative for Eq.(5.3)

at the origin. For models with fewer parameters, one can directly use a laborious

brute-force method to grid the parameter space uniformly, evaluating the likelihood

function at all the grid points and select the maximum after marginalizing over other

nuisance parameters. This requires tremendous computation power as the number of

parameters increases and the grid size decreases, rendering the analysis less feasible.

Markov Chain Monte Carlo (MCMC) (Liu, 2002) methods provide a powerful solution

to this class of problems. Instead of searching the full grid of the parameter space,

MCMC will sample the posterior distributions of each parameter by “jumping” in

parameter space with appropriate acceptance/rejection rules.

Next, we fit the data to a cosmological model with dynamic dark energy, allowing

the equation of state of dark energy and Hubble constant to be free parameters

in addition to ΩM . We also assume a flat Universe prior and constraints to the

parameters to be w ≥ −1 and ΩM ≥ 0. The Supernovae data we used is from the

gold sample of Riess et al. (2004). The fitting function is

µ(zi; ΩM , w, h) = 5 log

[

3000(1 + z)

h

∫ z

0
dz[ΩM(1+z)3+(1−ΩM)(1+z)3(1+w)]−1/2

]

+25

(5.4)

The results are presented in Figure 5.2 and 5.3. In doing the fitting, we use a

Markov Chain with 100,000 iterations after the initial burn in. The acceptance ratio

is 0.247 for both LSE method and the robust method. Though the difference between

the parameters from LSE and the robust method are not statistically significant, the

latter one has less tight constraints than the former one. These constraints are more

realistic because the error distributions are more tolerant to data points in the tails.

In the current case with Supernovae data, there is not a very big difference. But for

future combined data analyses, such as WMAP+SN+WL+CL, the difference may

be significant.
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Figure 5.2. (a) Contour plot of w-ΩM by LSE method; (b) Contour plot of w-ΩM by robust
method. Though in this case the difference is not statistically significant, the robust method gives
less tight constraints, which is more realistic.

Figure 5.3. Posterior distribution of every parameters. The corresponding estimates of the pa-
rameters are shown in Fig.(5.2). The distribution of w and ΩM are affected by our prior constraints
w ≥ −1 and ΩM ≥ 0.
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5.2 Figure of Merit for Dark Energy Experiments1

When we talk about constraints on dark energy, a very challenging task is to determine

what to constrain. Generally, we can describe dark energy by two characteristics: the

energy density (ΩDE) and the equation of state (w(z) = p(z)/ρ(z)) and therefore the

constraints should be on ΩDE and w(z).

However, constraining w(z) is a tricky issue. Generally speaking, since we do

not know the form of w(z) a priori, there is no reason to impose a fixed parametric

form for w(z) and a non-parametric w(z) is more favorable. We should allow some

freedom on the form of w(z) and let the data determine which form is preferred. In

this direction, Huterer & Starkman (2003) considered w(z) as piece-wise function of

different redshift bins wi(zi) and using SNIa data to constrain the value of wi in each

bin. Further work along this direction was done in (Saini, 2003; Wang & Mukherjee,

2004; Huterer & Cooray, 2005; Wang & Tegmark, 2005; Shapiro & Turner, 2006;

Stephan-Otto, 2006; Krauss et al., 2007) and most recently in (Albrecht et al., 2009).

However, as pointed out in (Genovese et al., 2008), such a scheme leads to big variance

on each of the estimated w(zi). As an improvement, a new scheme is proposed to fit

the non-parametric w(z)(Genovese et al., 2008) with a series of B-splines extending

to dimension k and determining the appropriate dimension k by using the Bayesian

Information Criterion (BIC) based on the SNIa data.

On the other hand, parametric w(z) promises efficient fitting and smaller variance

on the resulting parameters on w(z). But its full power is based on the assumption

that the parametric form of w(z) is very close to the “true” form, which we actually

do not know a priori.

A very important question here is how do we compare the constraints on w(z) from

different experiments. In the Dark Energy Task Force (DETF) report, one figure of

merit was suggested based on a specific parameterization of w(z) = w0 +waz/(1+z).

“The DETF figure of merit is the reciprocal of the area of the error ellipse enclosing

the 95% confidence limit in the w0−wa plane. Larger figures of merit indicate greater

1Tables and plots in this section are mostly reproduced from Liu et al. (2008)
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Figure 5.4. The evolution of the parametrization w(z) = w0 + waz/(1 + z). Since w0 just sets the
asymptotic value, we fixed it as -1 in the plot.

accuracy” (Albrecht et al., 2006). One can immediately notice that this figure of merit

is heavily dependent on the choice of the form of the parametrization. For the given

w(z) = w0 + waz/(1 + z), no matter how you vary the parameters w0 and wa, it

just can represent a specific family of the evolution of w. In Figure 5.4, we show the

evolution of w(z) for various wa.

If the real evolution of w(z) does not follow the family of evolutions depicted in

Figure 5.4, the DETF figure of merit will not truly reflect the reality of the constraints.

Therefore, a new figure of merit that is not dependent on a specific parametrization

is more desirable. In Liu et al. (2008), we proposed to use the area of the 1 σ error

band around w(z) as a new figure of merit. It is defined as

AW = 2
∫ zmax

0
{V ar[w(z)]}1/2dz (5.5)

where V ar[w(z)] is the variance of w(z). This is essentially the integrated error
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Name Definition Reference

Linear w(z) = w0 + waz Huterer & Turner (2001)
Weller & Albrecht (2002)

UIS w(z) = w0 + waz (z < 1) Upadhye et al. (2005)
w(z) = w0 + wa (z ≥ 1)

CPL w(z) = w0 + wa
z

1+z Chevallier & Polarski (2001)

Linder (2003)
Family I w(z) = w0 + wa(

z
1+z )n Liu et al. (2008)

Family II w(z) = w0 + wa
z

(1+z)n Liu et al. (2008)

Table 5.1. Some major 2-parameter parameterizations of equation of state

across a redshift range. Since our main goal is to know how well w(z) is constrained,

we should look at the integrated error rather than the error at a given pivot point.

Clearly, the area AW quantifies how well we can constrain the w(z) across the whole

redshift range from 0 to zmax. It is the overall information we have about w(z). No

matter how you parameterize w(z), AW can be calculated accordingly and compared.

The smaller the AW , the better the overall constraints on w(z).

There are many different parametric forms for w(z) which have been proposed.

In Table 5.2, we listed several two-parameter parameterizations. We will focus on the

two-parameter parameterizations in this work because they provide a starting point

for parameterizing the redshift dependence of the equation of state w(z). Clearly, as

more parameters are introduced, we can achieve a better fit to the data. Comparing

models with different numbers of parameters normally involves some arbitrariness on

the choice of penalization for larger number of parameters. For example, one can

choose either Bayesian Information Criterion (BIC) or Akaike Information Criterion.

In this work, we do not compare models with different number of parameters. We

will instead focus on two-parameter parameterizations.

As an example to show the variance of w(z) for a specific parametrization, let’s

consider the linear parametrization w(z) = w0 + waz. The variance is V ar[w(z)] =

V ar(w0)+ z2V ar(wa)+2zCov(w0, wa). Clearly, no matter how small the constraints

you place on w0 and wa, the variance V ar[w(z)] increases rapidly as redshift increases,

meaning that we have increased uncertainties about w(z) as redshift increases. How-

ever, the CPL parametrization will not diverge so rapidly as redshift increases. That
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Figure 5.5. The 1 σ error bands for linear parametrization (left) and CPL parametrization (right).
In the plot, we fix w0 = −1 ± 0.3, wa = 0.9 ± 1.8 and Cov(w0, wa) = −0.2. The same parameters
will lead to different information about w(z) for different parameterizations.

is to say, suppose we have the same constraints on w0 and wa for both cases, the CPL

parametrization essentially gives us more information (say, the Fisher Information)

about the w(z) across a wide redshift range. in Figure 5.5, we show the 1 σ band for

both parameterizations with the same constraints on w0 and wa.

Therefore, the CPL parametrization is better than the linear parametrization in

this sense. But is the CPL parametrization the best? To answer this question, we con-

sider two families of nested parameterizations that both have the CPL parametriza-

tion as a special case. We then look at their corresponding AW in addition to their

minimum χ2 from the fit. The point here is that if they have similar minimum χ2,

the one that has less AW is more favored.

Among the many observations that can help constrain the shape of w(z), SNIa

data provide the most straightforward constraints. Therefore, in this work, we will

study the effects of different parameterizations on our understanding of the evolution

of dark energy based on SNIa data.

In Table 5.2, we tabulated the constraints on w0, wa and the corresponding AW

for different parameterizations based on the SNIa data. In Fig. 5.6, 5.7, 5.8, we

plot the corresponding 1 σ band for different parameterizations. In Fig. 5.9, we plot
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Model χ2
min w0 wa AW

Linear 195.409 -1.12628±0.281052 0.0811196±1.18901 2.92336
UIS 195.412 -1.1192±0.27732 0.0485532±1.17151 2.21778
CPL 195.411 -1.12456±0.331918 0.0961458±1.89159 1.88532

Family I
n=2 195.413 -1.11369±0.21235 0.135963±4.91012 3.1127
n=3 195.402 -1.12407±0.181828 1.52726±14.2855 5.13255
n=4 195.314 -1.15242±0.164779 13.4211±34.8666 7.01332

Family-II
n=2 195.409 -1.13475±0.412811 0.203332±3.09753 1.13799
n=3 195.399 -1.17258±0.546306 0.631377±5.28164 0.641504
n=4 195.356 -1.29367±0.787516 2.28402±9.61853 0.960275

Table 5.2. The minima of χ2 and areas of the w(z) band for different models using 192 SNIa data
(Davis et al., 2007; Wood-Vasey et al., 2007; Riess et al., 2007). For the nested family I and II, we
omit the n = 1 case because they both reduce to the CPL parametrization as n = 1

Figure 5.6. Evolution of w(z) under the UIS (left) and linear (right) parameterizations

χ2
min −AW for different parameterizations. Based on this plot, we can see that family

II with n = 4 or 3 performs better than the CPL parametrization.

We must point out that this work is still an initial test for the method. The

AW are closely related to the testing power when we perform the hypothesis test to

compare w(z) for theoretical models and experiments. More systematic analyses by

incorporating more experimental data is underway.
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Figure 5.7. Evolution of w(z) under the family I parameterizations of different n.
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Figure 5.8. Evolution of w(z) under the family II parameterizations of different n.

Figure 5.9. The phase diagram in the χ2

min
− AW plane for parametrizations listed in Table.5.2

based on SNIa data fit. Based on this plot, we can see that family II with n=3 or 4 outperform the
CPL parametrization
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CHAPTER 6

The Outlook

6.1 Conclusions

In this thesis, I developed a new optical cluster detection algorithm, GMBCG, which

detects galaxy clusters by taking advantage of red sequence galaxies. The algorithm

is easily extendible to high redshift by switching to the appropriate color ridgeline as

redshift increases. The most important feature of the algorithm is that it does not

require prior knowledge of very specific filters in color space and real space. Instead, it

detects color clustering using an Error Corrected Gaussian Mixture Model (ECGMM)

and then convolves the selected red sequence galaxies with a radial kernel. In the

process, the algorithm does not match to any model filters. Therefore, it is less biased

compared with matched filter algorithms.

Another major difference between the current algorithm and matched filter algo-

rithms is the photometric redshift. In GMBCG, the photometric redshifts are taken

as independently determined inputs. GMBCG itself does not optimize any matching

to filters with respect to photometric redshifts. Based on the detected red sequence,

the algorithm can produce a photometric redshift as a byproduct.

The detection limit in GMBCG depends mainly on the proper functioning of the

ECGMM. Based on our Monte Carlo test, the ECGMM can work reliably when there

are more than 10 red sequence galaxies. By using the resampling technique (as in

section 2.3.3), we can make the ECGMM fitting significantly more robust.

By applying the algorithm, we have assembled a catalog of more than 53,000 rich

clusters based on the DR7 of SDSS. The main sample of clusters spans a wide redshift

range from 0.1 to 0.5 in an approximately volume limited way. This new catalog will
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enable further studies of the evolution of clusters with sufficient statistics.

6.2 Follow-ups

The most immediate analysis based on the GMBCG clusters will be a weak grav-

itational lensing analysis for stacked clusters. Finding clusters is important, but

knowing their masses is even more important for cluster cosmology. A good cluster

finding algorithm should yield not only the list of clusters, but also some observable

measurements (such as richness) that can be consistently mapped to masses across a

wide redshift range.

Recently, we have used weak lensing analysis to estimate the masses of clusters in

the maxBCG catalog (Sheldon et al., 2007c,a; Johnston et al., 2007). We will soon

extend this analysis to the GMBCG clusters, which have different, presumbly better

richness measurements. Meanwhile, a number of clusters in the new GMBCG catalog

show strong lensing signatures, arcs, which will allow us to estimate their masses using

strong lensing techniques. A cross comparison between the results from different

lensing techniques will provide additional information on the clusters’ masses. Most

important, an empirical halo occupancy distribution (HOD) and its evolution could

be constructed by analyzing the cluster masses via gravitational lensing.

Two additional techniques for estimating masses of maxBCG clusters, the velocity

dispersion (Becker et al., 2007) and X-ray luminosity (Rykoff et al., 2008), will also

be extended to the new GMBCG clusters. These analysis are complementary to the

weak lensing analysis and can help to get tighter constraints on the mass richness

scaling relation. Since GMBCG clusters span redshifts 0.1 to 0.5, they will allow us

to measure the evolution of cluster properties across a broader redshift range than

was possible with maxBCG.

GMBCG clusters, drawn from a much larger volume than maxBCG, will be es-

pecially useful for cosmological constraints. With more clusters and a wider redshift

range, we expect to lay down considerable tighter constraints on σ8 and ΩM .

Finally, an important application of the GMBCG algorithm is to mock surveys.

Mock catalog can help to understand the performance of the cluster finder at high
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redshift and the interplay between clusters and dark matter halos. This is an indis-

pensable step for cluster cosmology.

6.3 Dark Energy Survey and the Future

As I pointed out in the introduction, the major motivation for our cluster detection

project is for cluster cosmology. The Dark Energy Survey (DES) (The Dark En-

ergy Survey Collaboration, 2005) is the next generation multi-color digital sky survey

aimed at providing tighter constraints on dark energy evolution. The GMBCG algo-

rithm is especially designed for this survey. Numerous tests of the algorithm against

the DES simulation are undergoing. All our experience with the algorithm on SDSS

data will prepare us for the deeper data from DES.

On a similar time scale as DES, cluster detection efforts in the microwave band

are underway. The South Pole Telescope project (Staniszewski et al., 2008, SPT)

is designed to detect galaxy clusters via the Sunyaev-Zeldovich effect in the mi-

crowave band. It covers 4000 deg2 of the southern sky, which are also covered

by DES in the optical band. Therefore, SPT and DES are highly complimentary

for cluster detection and their mass calibration. The planned mission, eROSITA

(http://www.mpe.mpg.de/projects.html #erosita), is an X-ray all-sky survey in the

medium energy range up to 10 keV. It will provide rich data for detecting clusters in

the X-ray band. In the very near future, the combined analysis of clusters detected

from these multi-wavelength data will significantly improve the purity, completeness

and mass calibration of galaxy clusters. No doubt, cluster cosmology is becoming

a hot research topic and tighter constraints on the evolution of dark energy will be

imposed.

Besides dark energy, a major task in physics and astronomy is to map out the

observable part of our Universe and catalog all the celestial objects we can detect

in the next 10 to 20 years. We are now in a unique historical era. We are building

the basic atlas of the Universe, just as explorers did for the Earth 500 years ago.

Galaxy clusters are the largest gravitationally bound systems in our Universe. Besides

cosmology, building a cluster catalog, on its own, is an important contribution to this
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ambitious task in cosmic mapping. The completion of the GMBCG cluster catalog

for the SDSS DR7 is one significant step towards cluster cartography in the near

future.
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APPENDIX A

C++ class for implementation of ECGMM

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

NAME:
ecGMMClass . h

PURPOSE:

This C++ c l a s s implement the EM algor i thm for the one dimensional
Error Corrected Gaussian Mixture Model as s p e c i f i e d in
Jiangang Hao e t al , 2008

PLATFORM:

This code i s t e s t e d on Redhat Linux and Cygwin with gcc ver s ion 3 .4 . 4
in 2008.

NOTE: s ince d i f f e r e n t peop le w i l l use the mixture model very d i f f e r e n t l y , I d id
not prov ide a s imple funct ion , ins tead , i put the most ba s i c b r i c k : the
ecGMMClass t ha t you can customize very f r e e l y by f o l l ow i n g the example .

DEPENDENCIES:

The c l a s s i t s e l f does not r e qu i r e o ther l i b r a r i e s than the standard C++
l i b r a r i e s . I f you want to use random number to t e s t i t , I recommend you
use the GNU g s l random number genera tors . In the ecGMM. cpp f i l e , the random
generator i s used . So , make sure you have g s l p roper l y i n s t a l l e d .

USAGE:

This c l a s s produce an ob j ec t , in which you can s p e c i f y the data as
we l l as the EM i t e r a t i o n s . The input par t i n c l ud ing :

W : your i n i t i a l guess o f the we igh t s o f Gaussian components
Mu: your i n i t i a l guess o f the l o c a t i on s o f Gaussian components
Sigma : your i n i t i a l guess o f the width o f Gaussian components
x : the data array
xErr : the measurement e r ror s corresponding to x
N: the number o f mixtures .

REVISION HISTORY:

Created September −2008: Jiangang Hao , Un ive r s i t y o f Michigan
Copyright (C) 2008 Jiangang Hao , Dept . o f Phys . , Un ive r s i t y o f Michigan

jghao@umich . edu or jianganghao@gmail . com

This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or modify
i t under the terms o f the GNU General Pub l i c License as pub l i s h ed by
the Free Software Foundation ; e i t h e r ver s ion 2 o f the License , or
( at your opt ion ) any l a t e r ver s ion .

This program i s d i s t r i b u t e d in the hope t ha t i t w i l l be use fu l ,
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but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty o f
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Pub l i c License f o r more d e t a i l s .

You shou ld have rece i v ed a copy o f the GNU General Pub l i c License
a long with t h i s program ; i f not , wr i t e to the Free Software
Foundation , Inc . , 51 Frank l in St , F i f t h Floor , Boston , MA 02110−1301 USA

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#include<iostream>
#include<f stream>
#include<cmath>
#include<vector>
using namespace std ;

class ecGMM {
public :

vector<double> x , xErr , W, Mu, Sigma ;
double GaussErrFun (double y , double yErr , double mean , double sd ) ;
double pSum( int j ) ;
double pIJ ( int i , int j ) ;
void W update ( ) ;
void Mu update ( ) ;
void Sigma update ( ) ;
void update ( ) ; // rep l ace W,Mu and Sigma with the new one
double lhood ( ) ; // Ca l cu la t e the l i k e l i h o o d
double BIC ( ) ; // Ca l cu la t e the BIC of the maximum l i k e l i h o o d
int N; // number o f mixture
int M; // number o f data po in t s
double ep ; // p r e c i s i on goa l

ecGMM( int N){
for ( int k=0; k<N; k++){

Wt. push back ( 0 . ) ;
Mut . push back ( 0 . ) ;
Sigmat . push back ( 0 . ) ;

}} // cons t ruc to r to i n i t i a l i z e Wt, Mut , Sigmat

private :
vector<double> Wt, Mut , Sigmat ; // s t o r e the update

} ;

//−−−−−−−−−−−−−−−−−−d e f i n i t i o n o f member func t ions−−−−−−−−−−−−−−−−−//

double ecGMM: : GaussErrFun (double y , double yErr , double mean , double

sd ) {
double PI=3.14159265;
double r e s =0. ;
r e s = exp(− pow( ( y−mean ) , 2 . 0 ) / ( yErr∗yErr+sd∗ sd ) /2 . 0 ) / sq r t ( 2 . 0∗PI ∗( yErr∗yErr+sd∗ sd ) ) ;
return r e s ;

}

//−−−−−−−−de f i ne \sum k=0ˆN p( y j | z j=k ,\ t h e t a ˆ{( t)})−−−−−−−−−−−−−−//

double ecGMM: : pSum( int j ) {
double r e s = 0 . ;
for ( int k = 0 ; k < N; k++)

{
r e s = r e s + GaussErrFun (x [ j ] , xErr [ j ] ,Mu[ k ] , Sigma [ k ] ) ∗W[ k ] ;

}
return r e s ;

}

//−−−−−−−de f i ne p( z j=i | y j ,\ t h e t a ˆ{( t)})−−−−−−−−−−−−−−−−−−−−−−−−−−//

double ecGMM: : pIJ ( int i , int j ) {
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double r e s ;
r e s = GaussErrFun (x [ j ] , xErr [ j ] ,Mu[ i ] , Sigma [ i ] ) ∗W[ i ] /pSum( j ) ;
return r e s ;

}

//−−−−−−−Update Weight and s t o r e i t in Wt−−−−−−−−−−−−−−−−−−−−−−−−−−//

void ecGMM: : W update ( ) {
double r e s ;
for ( int i = 0 ; i < N; i++)

{
r e s = 0 . ;
for ( int j = 0 ; j < M; j++)

{
r e s = r e s + pIJ ( i , j ) ;

}
Wt[ i ] = r e s /double (M) ;

}
}

//−−−−−−−Update Mu and s t o r e i t in Mut−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

void ecGMM: : Mu update ( ) {
double resu , re sd ;
for ( int i = 0 ; i < N; i++)

{
re su = 0 . ;
r e sd = 0 . ;

for ( int j = 0 ; j < M; j++)
{

re su = resu + x [ j ]∗ pIJ ( i , j )∗pow( Sigma [ i ] , 2 ) / ( pow( Sigma [ i ] ,2)+pow( xErr [ j ] , 2 ) ) ;
r e sd = resd + pIJ ( i , j )∗pow( Sigma [ i ] , 2 ) / ( pow( Sigma [ i ] ,2)+pow( xErr [ j ] , 2 ) ) ;

}
Mut [ i ] = resu / resd ;

}
}

//−−−−−−−Update Sigma and s t o r e i t in Sigmat−−−−−−−−−−−−−−−−−−−−−−−//

void ecGMM: : Sigma update ( ) {
for ( int i = 0 ; i < N; i++)
{
double re su = 0 . ;
double re sd = 0 . ;
for ( int j = 0 ; j < M; j++)

{
re su = resu + pow( ( x [ j ] − Mu[ i ] ) , 2 ) ∗ pIJ ( i , j )∗pow( Sigma [ i ] , 2 )

/(pow( Sigma [ i ] ,2)+pow( xErr [ j ] , 2 ) ) ;
r e sd = resd + pIJ ( i , j )∗pow( Sigma [ i ] , 2 ) / ( pow( Sigma [ i ] ,2)+pow( xErr [ j ] , 2 ) ) ;

}
Sigmat [ i ] = sq r t ( re su / resd ) ;

}
}

//−−−−−−−update a l l parameters −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

void ecGMM: : update ( ) {
for ( int i =0; i<N; i++)

{
W[ i ] = Wt[ i ] ;
Mu[ i ] = Mut [ i ] ;
Sigma [ i ] = Sigmat [ i ] ;

}
}

//−−−−−c a l c u l a t e the l i k e l i h o o d −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
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double ecGMM: : lhood ( ) {
double res1 , r e s2 ;

r e s1 =1. ;
for ( int j =0; j<M; j++)

{
r e s2 =0. ;
for ( int i =0; i<N; i++)

{
r e s2 = re s2 + W[ i ]∗ GaussErrFun (x [ j ] , xErr [ j ] ,Mu[ i ] , Sigma [ i ] ) ;

}
r e s1=re s1 ∗ r e s2 ;

}
return ( r e s1 ) ;

}

//−−−−−re turn the BIC−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

double ecGMM: : BIC( ) {
double r e s ;
r e s =−2.0∗ l og ( lhood ())+double ( 3 .∗N−1.)∗ l og (double (M) ) ;
return ( r e s ) ;

}
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APPENDIX B

Parameter fitting with MCMC

In this appendix, we show briefly how the MCMC methods (Metroplis Hasting

algorithm) work. For more details, refer to (Liu, 2002). For simplicity, we consider a

model with parameters θ. Given the parameters at tth iteration as θ(t), we make the

variations as

θ′ = θ(t) + ǫ (B.1)

where ǫ is a set of random variables generated and re-scaled. Then, we draw U ∼
Uniform[0, 1]. If U ≤ r(θ(t), θ′), then we make the following updates

θ(t+1) = θ′ (B.2)

On the other hand, if U > r(θ(t), θ′), we make the update as

θ(t+1) = θ(t) (B.3)

The r(θ(t), θ′) is defined as

r(θ(t), θ′) = min[1,
π(θ′)

π(θ(t))
] (B.4)

where π(θ) is the posterior probability distribution of the parameters given the data.

After sufficient long sampling, we will recover the corresponding posterior probability

distributions of θ, from which we will get all information about that parameters, i.e.

their means, variances and etc.
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